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Abstract— A robust control problem for distant downstream
control of a reservoir-canal system modeled by Saint-Venant
equations is investigated. The problem is to regulate the release
of water at the upstream end such that the measured water level
(or stage) at the downstream end does not deviate outside of pre-
scribed bounds under the effect of downstream perturbations.
Under the assumption of small perturbations, the Saint-Venant
model is linearized around a steady state flow. The resulting
linear model is discretized to obtain a linear state-space model
using a method of characteristics based numerical scheme. For
the state space model, the control is the upstream discharge
deviation, the disturbance is the downstream discharge devi-
ation and the output is the downstream stage deviation; the
deviations are defined with respect to the steady state. The sets
of admissible control, disturbance and output trajectories are
modeled by polytopes. It is shown that the control problem
can be formulated as a robust feasibility problem. Using linear
programming duality, conditions for existence of a robustly
feasible solution are derived. These conditions, being affine in
the control variables, are checked using linear programming.
The proposed method is applied to control a typical reservoir-
canal system.

I. INTRODUCTION

Open-channel hydraulic systems are central to a variety of

human needs such as irrigation, power generation and flood-

control. Since water is increasingly becoming a precious

resource, efficient management of irrigation systems has be-

come a crucial issue. Historically, irrigation systems around

the world were manually operated and users withdrew a pre-

scheduled amount of water which was within the capacity

limits of the system [1]. The control policy used was local

upstream control, where the downstream hydraulic structure

is used to control water level (stage) just upstream. Although

this control policy is easy to implement, it does not support

on-demand water supply and may lead to high operational

losses.

Another well-known canal control policy is the distant down-

stream control wherein, the upstream flow is controlled to

meet desired downstream demand [2]. This policy supports

more effective utilization but may compromise on the effi-

ciency with respect to the users if the downstream demand

is not met sufficiently soon. Implementation of a distant

downstream control policy that is both user efficient and

resource effective is complicated and usually requires design

of automatic controllers.

This article focuses on the distant downstream control of
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Fig. 1. A reservoir-canal system.

a reservoir-canal system as shown in Figure 1 modeled by

Saint-Venant equations. These equations are quasi-linear, hy-

perbolic partial differential equations (PDEs). They describe

the dynamics of one-dimensional flow in open-channels

hydraulic systems and have been widely used in hydraulics

[3]. The flow conditions are assumed to be subcritical - that

is, the gravity wave speed is higher than the flow speed. The

objective is to find a suitable control that will regulate the

upstream discharge such that the downstream stage remains

within prescribed bounds under the effect of downstream

perturbations. These perturbations are typically caused by

users withdrawing water at variable rates.

In order to achieve this objective, the Saint-Venant model

is first linearized around a steady state, non-uniform flow in

Section II. The linear PDE model is discretized to obtain a

state space model using a method of characteristics (MOC)

based explicit numerical scheme in Section III. For the state

space model, upstream discharge from steady state is the

control variable, the downstream discharge deviation is the

disturbance variable and the downstream stage deviation is

the output variable. The deviations are defined with respect

to the steady state. Section IV models the set of admissible

control, disturbance and output trajectories as convex poly-

topes. The robust feasibility problem is defined as that of

finding an admissible control trajectory such that the output

trajectory remains within the prescribed polytope under all

admissible disturbances. Such a control trajectory, if it exists,

is called robustly feasible control. It is shown that using

linear programming (LP) duality, the existence of a robustly

feasible control is equivalent to checking the feasibility

of a set of linear matrix inequalities (LMIs). The case

without control and the cases of feedforward and disturbance

feedback controls are considered. Section V evaluates the

performance by simulating the controlled flows for a typical

reservoir-canal system. In Section VI, concluding remarks

are drawn and scope of future work is discussed.
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This article complements an already existing body of re-

search regarding control of open-channel hydraulic systems,

some of which include: PI control [4], ℓ1 control [5], H∞

control [6], LQ control [7],[8], model predictive control

[9], control of nonlinear Saint-Venant PDE [10] based on a

Riemann invariant approach and adjoint based optimization

[11]. The method proposed in the present article differs from

the literature in a number of aspects. To the best of our

knowledge, in most of the earlier approaches based on the

state space approximation, the discretization of the Saint-

Venant model is followed by the linearization of the resulting

non-linear algebraic equations [7]. A possible reason of

this approach is that the state-space model was constructed

from implicit finite-difference schemes such as the four-

point Priessmann scheme [3]. On the other hand, in this

article, the linearization of the Saint-Venant model around the

steady state is followed by the discretization of the resulting

linear PDE model. Our approach has the advantage that for

the linear PDE model, the control, disturbance and output

variables can be directly defined in terms of deviations from

steady state. The linear PDE model can be discretized using

a variety of numerical schemes to obtain a state space model.

Even though the MOC-based numerical scheme does not

allow large time steps for simulating the flow, the numerical

solution converges to the actual solution of the linear PDE

model as time step goes to zero.

Furthermore, since the conditions for existence of a robustly

feasible control are affine in the control variables, these can

be checked using linear programming (LP). This offers a

computationally tractable solution to the robust feasibility

problem.

II. MODELING RESERVOIR-CANAL SYSTEM

A. Saint-Venant Model

The Saint-Venant model for a rectangular cross-section is

given by [3]:

TYt + Qx + w = 0 (1)

Qt +

(

Q2

TY
+

gTY 2

2

)

x

+ gTY (Sf − Sb) + wu′ = 0 (2)

for (x, t) ∈ (0, X)×R
+ with Q(x, t) the discharge (m3/s)

across cross-section A(x, t) = TY (x, t), Y (x, t) the stage or

water-depth (m), T the free surface width (m), Sf (x, t) the

friction slope, Sb the bed slope m/m, g the gravitational

acceleration (m/s2), w the distributed lateral-outflow per

unit length of the channel (m2/s) and u′ the x−component

of the lateral-outflow velocity (see Figure 1). Also, V (x, t)
the average velocity (m/s) in the cross-section A defined by

V = Q/A and P (x, t) the wetted perimeter (m) defined by

P (x, t) = T + 2Y (x, t). Note that since the channel cross-

section is assumed to be rectangular, the free surface width

T is constant. The friction slope Sf is empirically modeled

by the Manning-Strickler’s formula [3]

Sf =
Q2n2

A2R4/3
(3)

with n the Manning’s roughness coefficient (sm−1/3) and

R the hydraulic radius (m), defined by R = A/P .

The boundary conditions are Q(0, t) = Q0(t) and Q(X, t) =
QX(t). This form of boundary conditions is best suited for

canal control purposes, since they can be locally linked

with the control structures via stage-discharge equations.

The initial conditions are given by Q(x, 0), Y (x, 0) for x ∈
[0, X].
In this article, the upstream discharge Q(0, t) is regulated

to control the stage Y (X, t) at the downstream end of the

canal reach in response to the fluctuations in the downstream

discharge Q(X, t). We refer to Q(0, t) as the control action

variable, to Q(X, t) as the disturbance variable and to

Y (x, t) as the controlled variable. It is assumed that Y (X, t)
can be measured by level sensors.

Remark 1: In practice, distant downstream canal control

is achieved by controlling the upstream gate opening which

in turn regulates the discharge released in the canal. The

stage and discharge for the case of underflow sluice gate are

related by Q(0, t) = Q0(t) = GW (t)(Υu − Y (0, t))
1

2 with

G the coefficient depending on the gate design, W(t) the gate

opening, Υu a fixed upstream water level. In this article, we

do not explicitly consider gate opening as a control variable.

B. Steady state flow

Under constant boundary conditions, there exists a steady

state solution of the Saint-Venant equations (1,2). We denote

the variables corresponding to the steady state condition by

Q0(x), Y0(x) etc. where x ∈ (0, X) respectively. The Saint-

Venant equations become

dQ0(x)

dx
= −w (4)

dY0(x)

dx
=

Sb − Sf0(x) + Dl0 + F0(x)2wY0(x)
Q0(x)

1 − F0(x)2
(5)

with C0 =
√

gY0, F0 = V0/C0, V0 = Q0/A0, Dl0 =
(V0(x)−u′)w

T0Y0g . Here, C0 is the gravity wave celerity, F0 is

the Froude number and Dl0 is the dynamic contribution of

lateral outflow, all under the steady state condition. These

two equations define the steady state flow under lateral

withdrawal. While Q0(x) = Q0 − wx by the first equation,

the second equation is solved for Y0(x) with boundary

condition in terms of downstream elevation Y0(X). In this

article, we assume the flow to be sub-critical, i.e., F0 < 1.

C. Linearized Saint-Venant Model

Following [12], we obtain the linearized Saint-Venant

model around the steady-state flow characterized by Q0(x)
and Y0(x). Denoting the first-order perturbations in discharge

and water level by q(x, t) and y(x, t) respectively, we have

Q(x, t) = Q0(x) + q(x, t) (6)

Y (x, t) = Y0(x) + y(x, t) (7)

Thus, A(x, t) = A0(x) + T0y(x, t) and P (x, t) = P0(x) +
2y(x, t). Note that T0 was previously called T ; the sub-

script 0 emphasizes that it is uniform. These equations
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are substituted in equations (1,2) and expanded in Taylor

series. Neglecting higher order terms, a given term f(Q,Y )
of the Saint-Venant model can be written as: f(Q,Y ) =
f(Q0, Y0) + (fQ)0 q + (fY )0 y where, (·)0 indicates that all

quantities are evaluated at steady state conditions. The lin-

earized mass and momentum conservation equations become

T0yt + qx = 0 (8)

qt + 2V0(x)qx − β0(x)q + α0(x)yx − γ0(x)y = 0 (9)

with α0(x), β0(x) and γ0(x) given by:

α0 = (C2
0 − V

2
0 )T0 (10)

β0 =
2g

V0

(

F
2
0

w0

V0T0
+ F

2
0

dY0

dx
− Sf0

)

(11)

γ0 = gT0

(

κSf0 + Sb −
2w0

V0T0
F

2
0 − (1 + 2F

2
0 )

dY0

dx

)

(12)

with κ = 7/3 − 8Y0/(3P0). In the above equations, the
dependence on x is omitted for readability. Since the lin-
earization is done around the steady state, the expressions for
β0(x) and γ0(x) can be simplified further by substituting the
expression for Sf0 from equation (5) into (11,12), leading to

γ0 = gT0

[

(1 + κ)Sb − (1 + κ − (κ − 2)F 2
0 )

dY0

dx

]

+ gT0

[

κDl0 + (κ − 2)F 2
0

(

w0

V0T0

)]

(13)

β0 = −
2g

V0

(

Sb + Dl0 −
dY0

dx

)

(14)

The upstream and downstream boundary conditions are re-

spectively

q(0, t) = u0(t) q(X, t) = pX(t) (15)

where, u0(t) is the applied control and pX(t) is the distur-

bance. The initial conditions are given by

y(x, 0) = 0 q(x, 0) = 0 ∀x ∈ [0, X] (16)

Finally, the measurement equation is simply

z(t) = y(X, t) (17)

III. NUMERICAL SOLUTION OF LINEARIZED

SAINT-VENANT MODEL

A. Method of Characteristics Solution

The characteristic form of the linearized Saint-Venant
equations can be written as the following system of ordinary
differential equations (ODEs):

±T0(C0(x) ∓ V0(x))
dy

dt
+

dq

dt
− (γ0(x)y − β0(x)q) = 0 (18)

each, respectively, valid on

dx

dt
= V0(x) ± C0(x) (19)

The solution of ODEs (19) gives a family of intersecting

curves known as the left and right characteristics curves (C+

and C−). The four ODEs (18,19), known as the MOC solu-

tion, can be simultaneously solved to simulate the linearized

Saint-Venant model starting from known initial and boundary

conditions.

ûx

û
t C

+ C
-

xjxj-1 xj+1

t
k

t
k+1

R S

P

x
+
j x

-
j

Fig. 2. Solution by MOC.

Figure 2 shows the x − t plane covered with a rectangular

grid specified by lines of constant time and space steps.

Consider the characteristic curves originating from points R
and S and intersecting at point P . The region under the

characteristic curves represents the domain of dependence

of point P . Starting with known values of q and y at points

R and S, the values at point P can be given by computed

by solving equations (18). For upstream (resp. downstream)

boundary, the pair of ODEs for C− (resp. C+) is solved

in conjunction with q(0, t) (resp. q(X, t)). We now use the

MOC to construct a numerical scheme to solve the linearized

Saint-Venant model numerically.

B. Discretization Procedure

In order to numerically solve the MOC solution, we dis-
cretize the ODEs (18,19) using first-order integration method
as used by [13]. The channel is discretized into a number of
equal segments of length ∆x. The number of such segments
J = X/∆x. A suitable time interval ∆t is selected1. Define
s = ∆t/∆x. For a general function f(x, t), let fk

j denote

the value of f at the point (j∆x, k∆t) as shown in Figure
2.
Given {yk

j , qk
j }J

j=0, we want to compute {yk+1
j , qk+1

j }J
j=0.

The update equations for {yk+1
j , qk+1

j }J−1
j=1 are

y
k+1
j = a1jy

k
j−1 + b1jy

k
j−1 + c1jy

k
j

+ d1jq
k
j + e1jy

k
j+1 + f1jq

k
j+1 (20)

q
k+1
j = a2jy

k
j−1 + b2jy

k
j−1 + c2jy

k
j

+ d2jq
k
j + e2jy

k
j+1 + f2jq

k
j+1 (21)

and the update equations for yk+1
0 and yk+1

J are

y
k+1
0 = m10y

k
0 + m20q

k
0 + m30y

k
1 + m40q

k
1 + m50u

k
0 (22)

y
k+1
J = m1Jy

k
J−1 + m2Jq

k
J−1 + m3Jy

k
J + m4Jq

k
J + m5Jp

k
J

(23)

A linear interpolation based procedure based on [13] is

used for computing the coefficients a1j through f1j , a2j

through f2j , m10 through m50 and m1J through m5j . The

procedure is omitted here due to space limitations. It should

be noted that the linear interpolation used in computing the

coefficients introduces a dispersive character to the numerical

1For the numerical scheme to be convergent, the time step ∆t should be
selected such that the Courant-Friedrichs-Lewy (CFL) condition is satisfied:
∆t(|V0|+C0)

∆x
< c, with c, a constant, usually chosen to be 0.9. For explicit

schemes, the CFL condition is also within a small factor of the stability
condition.
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scheme [13]. However, the dispersion can be minimized by

using sufficiently small time and space discretization steps. In

the limit, the numerical solution will converge to the solution

of the ODE system obtained with MOC (18,19) which is the

exact solution of the linearized Saint-Venant PDE (8,9).

IV. ROBUST FEASIBILITY PROBLEM

A. Linear state-space model

From the MOC update equations (20,21,22,23), we obtain

a state-space representation with state vector at time k
defined by x(k) = (yk

0 , qk
0 , . . . , yk

J , qk
J)T . The state evolution

equation is

x(k + 1) = Ax(k) + Bu(k) + Gp(k) (24)

with the applied control u(k) in the form of discharge pertur-

bation at the upstream end qk
0 and the discharge perturbation

p(k) at the downstream end qk
J . The observation equation is

z(k) = Cx(k) (25)

with the stage perturbation z(k) = yk
J at the downstream

end. Due to initial conditions given by equation (16), the

initial state vector satisfies x(0) = 0 and hence, z(0) = 0.

We define the control and disturbance vectors up to (and

excluding) time k by u = (u(0), . . . , u(k − 1))T and p =
(p(0), . . . , p(k − 1))T . Using equations (24,25), the output

vector z = (z(1), . . . , z(k))T up to time k can be expressed

as2

z = Ap + Bu (26)

with A and B being lower-triangular, Toeplitz matrices

with k-th row given by (CAk−1B, . . . , CB, 0, . . . , 0) and

(CAk−1G, . . . , CG, 0, . . . , 0) respectively.

B. Admissible sets and problem statement

We consider the situation in which the control vector u and

the disturbance vector p in equation (26) are unknown but

bounded. That is, we require u ∈ U and p ∈ P where U and

P are known, bounded sets that define the set of admissible

control and disturbance trajectories up to (and excluding)

time k. The requirement p ∈ P is motivated by unknown

demands at the downstream end. The requirement u ∈ U is

motivated by admissible discharge releases at the upstream

end. We describe the set of admissible control trajectories by

a polytopic model:

U = {u : ‖u‖∞ ≤ σ0} = {u : Uu � σ} (27)

with σ ∈ R
2k
+ is a vector of σ0’s and U = (I,−I)

T
, I the k×k

identity matrix. Similarly, the set of admissible disturbance

trajectories is modeled by

P = {p : ‖p‖∞ ≤ ρ0} = {p : Pp � ρ} (28)

2Note that the sizes of A,B, z,p,u depend on k. This dependence is
omitted for notational convenience.

with ρ ∈ R
2k
+ and P = (I,−I)

T
. We define the output

feasible set Z as the set of all admissible output trajectories3

up to time k:

Z = {z : ‖z‖∞ ≤ τ0} = {z : Zz � τ} (29)

with τ ∈ R
2k
+ and Z = (I,−I)

T
.

Definition 1: (Robustly feasible control). An admissible

control trajectory u ∈ U is robustly feasible if and only if

for every admissible disturbance trajectory p ∈ P , the output

trajectory of system (26) remains admissible, that is, z ∈ Z .

We now give the problem statement.

Problem 1: (Robust feasibility problem). Find necessary

and sufficient conditions for existence of a robustly feasible

control trajectory for system (26) with sets of admissi-

ble control, disturbance and output trajectories defined by

(29),(28),(29) respectively. That is, the problem is to find if

there exists u ∈ U such that for all p ∈ P , z = Ap+Bu ∈ Z .

C. Solution of robust feasibility problem using LP duality

We first state a lemma which follows from LP duality.

Lemma 1: Given a vector v, and a scalar δ, the condition

vT p ≤ δ for every p ∈ P is satisfied if and only if there

exists λ such that

λ � 0,PT λ = v, λT ρ ≤ δ.

Proof: vT p ≤ δ ∀p ∈ P ⇔ δ ≥ maxp{vT p : Pp ≤ ρ} =

minλ�0{λT ρ : PT λ = v} ⇔ ∃λ � 0, P
T λ = v, λT ρ ≤ δ.�

Consider the case when the control u in system (26) is

fixed. Without loss of generality, we can set u = 0. Problem 1

reduces to checking whether

∀p ∈ P, z = Ap ∈ Z (30)

The following corollary follows directly by applying

Lemma 1 row-wise to condition Zz = ZAp � τ .

Corollary 1: Condition (30) holds if and only if

∃M = (mij) : mij ≥ 0 PT M = AT ZT ,MT ρ � τ (31)

The above corollary can be generalized to the case of

feedforward control. Here, we let u to be a variable and

the robust feasibility problem is:

Find u : u ∈ U , ∀p ∈ P,Ap + Bu ∈ Z (32)

Again, applying Lemma 1 row-wise to condition Z(Ap +
Bu) � τ we obtain the following necessary and sufficient
conditions for condition (32) to hold:

∃M = (mij), ∃u : mij ≥ 0,Uu � σ,

P
T
M = A

T
Z

T
,ZBu + M

T
ρ � τ (33)

Conditions (31) and (33) can be checked using linear pro-

gramming. Note that condition (33) reduces to (31) when we

impose u = 0.

We now consider the case of affine disturbance feedback

control. That is, we assume that the disturbance trajectory p

3Time varying admissible bounds can be incorporated by setting
σ, ρ, τ as vectors of variable entries. For example, σ can be set as

(σ+
1 , . . . , σ+

k
, σ−

1 , . . . , σ−
k

, )T .
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Fig. 3. Steady state stage profile.

is measured and the control trajectory u is an affine function

of p. Specifically,

u(p) = u + Lp (34)

In order to impose that control is affine function of past

disturbances, we impose L to be lower triangular matrix.

Remark 2: This type of control parameterization has been

used in robust model predictive problems [14]. In [14], the

authors show that control parameterization (34) is equivalent

to the one where the control is affine function of past states.

The advantage of using (34) is that the robust feasibility

problem can be solved using a tractable and convex problem.

The robust feasibility problem in this case is:

Find u and L lower-triangular :

∀p ∈ P,u + Lp ∈ U ,Ap + B(u + Lp) ∈ Z (35)

This problem can be solved in two steps. First, the admis-
sibility of function u(p) is considered in the sense that
u(p) = u + Lp ∈ U for every p ∈ P . According to our
previous development, this is guaranteed by the following
necessary and sufficient condition.

∃N = (nij), ∃u, ∃L lower-triangular :

nij ≥ 0,P
T
N = L

T
U

T
,Uu + N

T
ρ � σ (36)

In the second step, for a fixed u and L, the admissibility of
output z is considered in the sense that Ap + B(u + Lp) ∈
Z for every p ∈ P . This is guaranteed by the following
necessary and sufficient condition

∃M = (mij) :

mij ≥ 0, P
T
M = (A + BL)T

Z
T
,ZBu + M

T
ρ � τ (37)

Again, the conditions (36,37) are affine inequalities in deci-

sion variables M, N, L, u and can be checked using linear

programming. These conditions reduce to (33) when we

impose L = 0.

V. CASE STUDY

This section deals with solving the robust feasibility prob-

lem for the case of a representative dam-reservoir system.

The parameters of equations (1,2,3) are summarized as

follows: T = 8 m, Sb = 0.0008 m/m, n = 0.02 m−1/3s,

w = 0 m2/s. Equations (4,5) are solved for Q0 = 80 m3/s
and Y0(X) = 5 m. The steady state discharge profile

is constant and the steady state stage profile is plotted in

Figure 3. It can be checked that the flow is sub-critical.

Let us recall that the original control problem: For system

(1,2), regulate the upstream discharge Q(0, t) such that

under the effect of downstream perturbation Q(X, t), the

Control Case ρ0 σ0 τ0

No control 0.0095 0.0 0.03
Feedforward 0.0095 0.0275 0.03
Feedback 0.02825 0.0275 0.03

TABLE I

Parameters describing admissible disturbance, control and stage

trajectories.

downstream stage Y (X, t) stays within a desired range.

Under the assumption of small deviations around the steady

state, the solution of the original nonlinear system can be

approximated by the solution of the linear system (8,9,15,16)

plus the steady state solution. The control problem now

becomes that of controlling the upstream discharge deviation

q(0, t) such that under small perturbations in downstream

boundary condition q(X, t), the downstream stage deviation

y(X, t) remains sufficiently close to 0. We implement the

MOC based numerical scheme of Section III in MATLAB

for the space step ∆x = 300 m. Using the CFL condition,

the time step of ∆t = 30 s is chosen. The total time horizon

of 3600 s is chosen and thus, number of time intervals

is K = 120. Using procedure outlined in Section IV-A,

matrices A and B of equation (26) are constructed.

The polytope Z that models the admissible set of output

trajectories is defined by setting the vector τ as the constant

vector with entries τ0 = 0.03 (see equation (29)). This

requirement imposes the constraint that the downstream stage

deviation y(X, k∆t) must remain within ±0.15 m (±3% of

Y0(X)) throughtout the time horizon. We solve the robust

feasibility problem (see Section IV) for the case without

control, and for the cases of feedforward and disturbance

feedback controls. The conditions for existence of a robustly

feasible solution for each of the three cases are respectively

given by equations (31), (33) and (36,37). These conditions

can be checked using standard LP solvers. In this study the

MINOS solver is used.

For the case of feedforward and of disturbance feedback

control, the polytope U that models the admissible set of

control trajectories is defined by setting the vector σ as the

constant vector with entries σ0 = 0.0275 (see equation (27)).

This requirement imposes the constraint that the upstream

hydraulic structure can be regulated around the steady state

operating point to release ±2.2 m3/s (±2.75% of Q0) of

water in the canal. The polytope P that models the set of

admissible disturbance trajectories is also defined by setting

the vector ρ as the constant vector with entries ρ0. By

increasing the value of ρ0, the set of admissible disturbance

trajectories becomes larger. Starting from small ρ0, the set P
is systematically increased until the conditions for existence

of robustly feasible solution are no longer feasible. For each

of the three cases, the maximum value of ρ0 for which these

conditions remain feasible are reported in Table I.

For the case of without control (see (31)) and of feedforward

control (see (33)), increasing ρ0 beyond 0.0095 made the

feasible region of the LP problem unbounded. Thus, the
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Fig. 4. Disturbance for feedforward case with and without constraint on
u.
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Fig. 5. Output for feedforward case with and without constraint on u.

maximum admissible disturbance that can be imposed by

the users at the downstream end of the canal without com-

promising on the robust feasibility is ±0.76 m3/s (0.95% of

Q0). In this particular study, the feedforward control did not

increase the admissible set of disturbance trajectories. For the

case of disturbance feedback, the corresponding maximum

admissible disturbance is ±2.26 m3/s (2.825% of Q0).

In order to test the performance of feedback control and

feedforward control, four different trajectories of admissible

disturbances are considered: p0(t) = Q0 sin
(

iπρ
K t

)

with

i = 2, 4, 6 and 8. For the case of feedforward control, each of

the admissible disturbances are simulated (see Figure 4). The

resulting output and input trajectories are shown in Figure 5

and Figure 6 respectively.

For the case of feedback control (see (36,37)), the distur-

bance, output and input trajectories are shown in Figure 7,

Figure 8 and Figure 9 respectively. It can be observed from

the figures that for each of the disturbance, the control and

output trajectories remain admissible throughout the time

horizon4.

From Figure 6 and Figure 9, one can observe that the

robustly feasible input trajectories seem to fluctuate more

than that might be desirable from a point-of-view of upstream

4As observed in Figure 8, the output trajectory deviates slightly from
the admissible bound for the case when i = 2. This can be attributed to
numerical errors.
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Fig. 6. Control for feedforward case without constraint on u.
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Fig. 7. Disturbance for feedback case with and without constraint on u.

gate operation. This issue can be addressed by imposing

additional constraints while solving the problems (33) and

(36,37). We impose the following constraint

|u(k + 1) − u(k)| ≤ ǫ (i = 1, . . . ,K − 1) (38)

where, ǫ is the maximum allowable discharge fluctuation be-

tween two consecutive time steps. We choose ǫ = 0.1 m3/s.

Problems (33) and (36,37) are again solved with constraint

(38) imposed. The robustly feasibly input trajectories for

feedforward and feedback case are shown in Figure 10 and

Figure 11 respectively. It is observed that the admissible
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Fig. 8. Output for feedback case with and without constraint on u.
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Fig. 9. Control for feedback case without constraint on u.
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Fig. 10. Control for feedforward case with constraint on u.

set of robustly feasible input trajectories does not reduce

for the constrained problems. However, the input trajectories

are more desirable from an operational viewpoint. It can

be noticed from Figure 10 that feedforward control has a

tendency to switch between one extreme to another. Lastly,

toward the end of time horizon, the feedback control trajec-

tories in Figure 11 show some abrupt variations before they

start behaving like open loop trajectories. This may be partly

attributed to finite-horizon problem structure of the problem.
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Fig. 11. Control for feedback case with constraint on u.

VI. CONCLUSION AND FUTURE WORK

This article showed that the robust distant downstream

control problem for a reservoir-canal system can be formu-

lated as a robust feasibility problem in which the constraints

on admissible set of disturbance, control and output trajecto-

ries can be easily incorporated. The resulting necessary and

sufficient conditions are affine in the control variables and

can be checked in a computationally efficient manner using

standard LP solvers.

The discussion in the article is concentrated on upstream

discharge as the control variable. For practical implementa-

tion, the upstream discharge needs to be translated to gate

openings. This can be done by incorporating the stage-

discharge rating curve of the upstream hydraulic structure

in the problem formulation. When certain operational con-

straints are relaxed, introduction of soft constraints can lead

to better solutions [9]. The admissible set of trajectories

can be also be allowed to be time varying by appropriately

modifying the polytopes. Lastly, longer time intervals can

be taken into consideration. Practical considerations such as

these will be addressed in future work. Future work will

also focus on robust model predictive control [14], with

application to canal control.
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