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Abstract— A parameter identification problem for systems
governed by first-order, linear hyperbolic partial differential
equations subjected to periodic forcing is investigated. The
problem is posed as a PDE constrained optimization problem
with data of the problem given by the measured input and
output variables at the boundary of the domain. By using
the governing equations in the frequency domain, a spatially
dependent transfer matrix relating the input variables to the
output variables is obtained. It is shown that by considering
a finite number of dominant oscillatory modes of the input,
an accurate representation of the output can be obtained. This
converts the original PDE constrained optimization problem to
one without any constraints. The optimal parameters can be
identified using standard nonlinear programming. The utility
of the proposed approach is illustrated by considering a river
reach in the Sacramento–San-Joaquin Delta, California, that
is subjected to tidal forcing. The dynamics of the reach are
modeled by linearized Saint-Venant equations. The available
data is the flow variables measured upstream and downstream
of the reach. The parameter identification problem is to estimate
the average free-surface width, the bed slope, the friction
coefficient and the steady-state boundary conditions. It is shown
that the estimated model gives an accurate prediction of the flow
variables at an intermediate location within the reach.

I. INTRODUCTION

Inverse problems arise frequently in the experimental study

of a large-scale physical systems [1]. These problems aim at

discerning the dynamics that govern the system based on the

available data collected by monitoring devices. One of the

most well-studied inverse problem is the parameter identifi-

cation problem for finite-dimensional systems in which the

task is to estimate the unknown parameters of an ordinary

differential equation (ODE) [2]. Parameter identification for

systems modeled by partial differential equations (PDEs) is

fundamentally different than the case of ODEs because of

the presence of spatial derivatives in the system model and

the dependence of coefficients on the space variable.

An example that motivates the study of parameter identifica-

tion for PDEs arises in open-channel hydraulic systems. The

flow dynamics of these systems are governed by shallow

water equations (SWE) which are nonlinear, hyperbolic

PDEs, also known as the Saint-Venant equations [3]. In

many practical applications, these equations are linearized

around a nominal flow. If the linearization is done about a

gradually varied steady state profile, the coefficients of the
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linearized PDE are spatially varying [4]. These coefficients

are nonlinear functions of the physical system parameters

such as the canal geometry, the friction factor as well as the

steady state boundary conditions. An accurate knowledge of

these physical parameters is essential for understanding the

flow dynamics in natural river systems [5] and for efficiently

controlling the canal networks [6],[7].

However, in most natural river systems, these parameters are

unknown and have to be estimated from the flow variables

measured by (fixed) Eulerian sensors [8] or (moving) La-

grangian sensors [9]. It then becomes important to investigate

techniques for accurate identification of the physical param-

eters of open-channel hydraulic systems. In this article, the

problem of estimating the parameters of a linearized SWE

subjected to periodic forcing is considered. This setting can

model the effect of tidal excitations on the flow dynamics of

long river reaches located much upstream of the river-ocean

confluence. In the current setting, the data of the problem

is the flow variables that are monitored at the upstream

and downstream ends as well as at selected intermediate

locations. The parameters to be estimated are: the canal

width, the bed slope, the roughness coefficient and the

steady state upstream and downstream boundary conditions.

The problem is to find the parameter values such that the

estimated linear SWE describes the measured data as best as

possible. The spatial dependence of these parameters is not

considered in the current work.

A common approach to achieve this objective is to choose the

parameter values that minimize the output least squares error

functional between the model predictions and the measured

data [10]. However, this formulation involves minimization

of a cost function, subjected to PDE constraints and it may

be difficult to solve in a numerically efficient manner [8].

In this article, tools from the frequency domain modeling

of linear PDEs are used to convert the PDE constrained

minimization problem to one without any PDE constraints.

By modal analysis, the input data is expressed in terms of

a small number of Fourier modes. The spatially dependent

transfer matrix relating the input variables to the output

variables is then used to obtain a parameterized prediction

of the output response for the chosen set of modal inputs.

The optimal parameters can be obtained by minimizing

the squared deviations of the output predictions from the

measured data. This minimization problem is considerably

easier to solve in comparison to the original PDE constrained

minimization problem. This is the main contribution of the

article.

The article is organized as follows: Section II introduces the
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linearized SWE and defines the associated forward simula-

tion and the parameter identification problems. The param-

eter identification problem is stated as a PDE constrained

minimization problem. Section III uses a frequency domain

modeling techniques to obtain a spatially dependent transfer

matrix relating the input flow variables to the output flow

variables. Section IV proposes a method based on the use of

modal decomposition of inputs and the input-output transfer

matrix to obtain a simpler formulation of the parameter

identification problem. In Section V, the proposed method

is applied to a river reach in the Sacramento–San-Joaquin

Delta for which system parameters and steady state boundary

conditions are estimated using the measured flow variables

at the upstream and downstream end of the river reach.

The validity of results is confirmed by comparing the flows

predicted by the estimated model with the flows measured at

an intermediate location. Conclusion and the scope for future

work is presented in Section VI.

II. SYSTEM MODEL AND PROBLEM STATEMENT

A. The Saint-Venant Model

The Saint-Venant equations are quasi-linear hyperbolic
PDEs that describe the dynamics of one-dimensional flow in
open-channel hydraulic systems [11],[3]. For a rectangular
cross-section, these equations are given by:

TYt + Qx = 0 (1)

Qt +

(

Q2

TY
+

gTY 2

2

)

x

+ gTY (Sf − Sb) = 0 (2)

for (x, t) ∈ (0, X) × ℜ+, where X the river reach m,
Q(x, t) the discharge (m3/s) across cross-section A(x, t) =
TY (x, t), Y (x, t) the stage or water-depth (m), T the free
surface width (m) which is constant for rectangular cross-
section, Sf (x, t) the friction slope (m/m), Sb the bed slope
m/m, g the gravitational acceleration (m/s2). Also, V (x, t)
the average velocity (m/s) in the cross-section A defined
by V = Q/A and P (x, t) the wetted perimeter (m) defined
by P (x, t) = T + 2Y (x, t). The boundary conditions are
Q(0, t) = Q0(t) and Y (X, t) = Y0(t). The initial conditions
are given by Q(x, 0) and Y (x, 0) for x ∈ [0, X]. The friction
slope is empirically modeled by the Manning-Strickler’s
formula

Sf =
Q2n2(T + 2Y )4/3

(TY )10/3
(3)

with n the Manning’s roughness coefficient (sm−1/3).
Under constant boundary conditions, equations (1,2) admit a
steady state solution. Let the flow variables corresponding to
the steady state condition be denoted by Q0(x), Y0(x) etc.
where x ∈ [0, X]. The steady state equations are given by

dQ0(x)

dx
= 0 (4)

dY0(x)

dx
=

Sb − Sf0

1 − F0(x)2
(5)

with C0 =
√

gY0 the wave celerity, F0 = V0/C0 the Froude

number and V0 = Q0/A0 the steady state velocity. While

Q0(x) = Q0 = QX by the first equation, the second

equation is solved for Y0(x) with boundary condition in

terms of downstream elevation Y0(X). In this article, we

assume the flow to be sub-critical, i.e., F0 < 1.

B. Linearized Saint-Venant Model

Following [4], equations (1),(2) can be linearized around

the steady state flow variables Q0(x) and Y0(x). The lin-

earized equations for perturbed flow variables q = Q(x, t)−
Q0(x) and y = Y (x, t) − Y0(x) are:

T0yt + qx = 0 (6)

qt + 2V0(x)qx − β0(x)q + α0(x)yx − γ0(x)y = 0 (7)

with α0(x), β0(x) and γ0(x) given by:

α0 = (C2
0 − V

2
0 )T0 (8)

β0 = −
2g

V0

(

Sb −
dY0

dx

)

(9)

γ0 = gT0

[

(1 + κ0)Sb − (1 + κ0 − (κ0 − 2)F 2
0 )

dY0

dx

]

(10)

with κ0 = 7/3−8Y0/(3(2Y0+T )). In the above equations, to

emphasize the free surface width T is uniform, it is denoted

as T0 and the dependence on x is omitted for readability. The

upstream and downstream boundary conditions are respec-

tively given by the upstream discharge perturbation q(0, t)
and the downstream stage perturbation y(X, t). The initial

conditions are given by y(x, 0) = 0 and q(x, 0) = 0 for all

x ∈ [0, X]. The linearized Saint-Venant model (6,7) can be

written in the following form:

ut = A(x)u (11)

where u is the two-dimensional vector function u(x, t) =
(u1(x, t), u2(x, t))T := (q(x, t), y(x, t))

T
defined on

(x, t) ∈ ℜ+, and A(x) denotes the linear operator given
by:

A(x) = −

(

2V0(x) α0(x)
1

T0
0

)

∂

∂x
+

(

β0(x) γ0(x)
0 0

)

(12)

The boundary conditions of (11) are given by

u1(0, t) and u2(X, t) (13)

and initial conditions given by

u(x, 0) = 0,∀x ∈ [0, X] (14)

C. Problem Statement

In this article, the boundary conditions u1(0, t) = q(0, t)
and u2(X, t) = y(X, t) are the measured input variables, the
downstream discharge perturbation u1(X, t) = q(X, t) and
the upstream stage perturbation u2(0, t) = y(0, t) are the
measured output variables; the measured input and output
variables are assumed to be known from a reference time 0
to a final time τ . Thus, for the linear PDE system (11),
the measured data is the vector function u(x, t) recorded at
x = 0 and x = X . The properties of the measured data
depend on a variety of factors such as the environment,
sensor characteristics, etc. In addition, it is assumed that
u(x, 0) = 0 for all x ∈ [0, X].
The Manning roughness coefficient n, the free surface width
T0, the bed slope Sb, the steady state discharge Q0 and
the steady state downstream stage Y0(X) are the unknown
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parameters of the system (11). We define the parameter

vector θ := (T0, Sb, n,Q0, Y0(X))
T

that ranges over the set:

DA :=
[

T0, T0

]

×
[

Sb, Sb

]

× [n, n]

×
[

Q0, Q0

]

×
[

Y 0(X), Y 0(X)
]

(15)

The linear operator A(x) can be considered to be parameter-

ized by θ that ranges over the parameter set DA. We define

the set of all linear operators allowed by DA as A(x) which

is given by:

A(x) := {A(θ;x)|θ ∈ DA} (16)

where, A(θ;x) encodes the linear operator (12) for a given

θ. To emphasize the dependence on θ of the linearized Saint-

Venant model, (11) is written as:

ut = A(θ;x)u (17)

We now define the forward and the inverse problems.

Definition 1: (Forward simulation). For a given θ, find u
satisfying: (17) with boundary conditions (13) and initial

conditions (14).

Definition 2: (Parameter identification). Given the set of

linear operators A(x), recover the parameter set θ that

optimally fits the model, (17) with boundary conditions (13)

and initial conditions (14), to the measured data u(X, t) and

u(0, t) recorded for all t ∈ [0, τ ].
Often, the forward simulation problem is simply called the

forward problem and the parameter identification problem is

called the inverse problem. The identified parameter vector

in the problem will be denoted θ̂. In the definition of inverse

problem, the optimality of the identified parameter vector θ̂
with respect to the given data needs to be defined. It should

be noted that once the parameter identification problem is

solved for θ̂, the forward simulation problem can be solved to

obtain the predicted output variables: û1(X, t|θ) = q̂(X, t|θ)
and û2(0, t|θ) = ŷ(0, t|θ). The notation û1(X, t|θ) indicates

the prediction of u1(X, t) by the PDE model under appro-

priate initial and boundary conditions and knowledge of the

parameter vector θ.

We define a scalar valued cost function as:

J (θ; τ ;u(0, ·), u(X, ·))

=

∫ τ

0

w1

u2
1,norm

(u1(X, t) − û1(X, t|θ))2 dt

+

∫ τ

0

w2

u2
2,norm

(u2(0, t) − û2(0, t|θ))2 dt (18)

where, w1 and w2 denote the weighing factors for the

cost function and u1,norm and u2,norm denote normalizing

coefficients of the cost function. Here, it is assumed that,

the data u(0, t) and u(0, X) is recorded for t ∈ [0, τ ].
It is important to note that implicit in equation (18) is the

requirement that for any given θ and τ , the evaluation of the

cost function would require solving the forward problem:

Solve (17) with boundary conditions (13) and initial condi-

tions (14). If φ(x, t|θ), (x, t) ∈ [0, X]× [0, τ ] is the solution

of the forward problem, the predictions can be obtained by

assigning û1(X, t|θ) = φ(X, t|θ) and û2(0, t|θ) = φ(0, t|θ)

for t ∈ [0, τ ]. Thus, the parameter identification problem can

be stated as follows:

Problem 1: Solve the minimization problem:

θ̂ = arg min
θ∈DA

J (θ; τ ;u(0, ·), u(X, ·)) (19)

with J (θ; τ ;u(0, ·), u(X, ·)) given by (18) and subject to

the PDE constraint: û1(X, t|θ) = φ(X, t|θ) and û2(0, t|θ) =
φ(0, t|θ), where φ(x, t|θ) is the solution of the forward

problem: (17) with boundary conditions (13) and initial

conditions (14).

The resulting estimate of the linearized Saint-Venant system

is given by:

ut = A(θ̂;x)u (20)

with boundary conditions u1(0, t) and u2(X, t) and zero

initial conditions.

III. SAINT-VENANT DISTRIBUTED TRANSFER MATRIX

This section is concerned with the frequency domain

modeling of the linearized Saint-Venant equations.

A. Uniform flow case for upstream flow variables as bound-

ary conditions

For the case of uniform flow, the application of the Laplace
transform to the linear partial PDE system (11) leads to the
ordinary differential equation (ODE) in variable x, with the
Laplace variable s (see [4] for details). Solving this ODE
with boundary conditions u1(0, s) and u2(0, s), leads to the
open-loop distributed transfer matrix for the case of uniform
flow, Gv(x, s) =

(

gv
ij(x, s)

)

, relating the flow variables at

any point x of the river reach u(x, s) to the upstream flow
variables u(0, s):

(

u1(x, s)
u2(x, s)

)

=

(

gv
11(x, s) gv

12(x, s)
gv
21(x, s) gv

22(x, s)

) (

u1(0, s)
u2(0, s)

)

(21)

with
gv
11(x, s) = λ2eλ1x

−λ1eλ2x

λ2−λ1
, gv

12(x, s) = −T0s
eλ2x

−eλ1x

λ2−λ1
,

gv
21(x, s) = λ1λ2

T0s
eλ2x

−eλ1x

λ2−λ1
and gv

22(x, s) = λ2eλ2x
−λ1eλ1x

λ2−λ1
.

Here, λ1 and λ2 are the eigenvalues of the ODE system, and
are given by:

λi(s) =
2T0V0s + γ0

2α0

+ (−1)i

√

4C2
0T 2

0 s2 + 4T0(V0γ0 − α0β0)s + γ2
0

2α0
(22)

B. Uniform flow case for input variables as boundary con-

ditions

Equation (21) can be modified to the case when the bound-
ary conditions are u1(0, s) and u2(X, s). The distributed
transfer matrix Gu(x,X, s) =

(

gu
ij(x,X, s)

)

relating the flow

variables at any point x of the river reach u(x, s) to the
measured input variables u1(0, s) and u2(X, s) (see Section
II-C) of the river reach is given by the equation:

(

u1(x, s)
u2(x, s)

)

=

(

gu
11(x, X, s) gu

12(x, X, s)
gu
21(x, X, s) gu

22(x, X, s)

) (

u1(0, s)
u2(X, s)

)

(23)

with gu
11(x, X, s) = λ2eλ1x+λ2X

−λ1eλ2x+λ1X

λ2eλ2X−λ1eλ1X
, gu

12(x, X, s) =

−T0s
eλ2x

−eλ1x

λ2eλ2X−λ1eλ1X
, gu

21(x, X, s) = λ1λ2

T0s
eλ2x+λ1X

−eλ1x+λ2X

λ2eλ2X−λ1eλ1X

and gu
22(x, X, s) = λ2eλ2x

−λ1eλ1x

λ2eλ2X−λ1eλ1X
where, λ1 and λ2 are given

by (22).
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C. Non-uniform case using backwater approximation

Following the method used by [12], the backwater curve
defined by equation (5) is approximated by two straight
lines as represented in Figure 1. The river reach is then
decomposed into two parts: a uniform part and a backwater
part. The abscissa of the limit between the parts is denoted
x1. Let xu = x denote the location in the uniform part, xb =
x − x1 denote the location in the backwater part. Xu = x1
denote the length of the uniform part and Xb = X − x1
denote the length of the backwater part. Let Gu(xu, Xu, s)
and Gb(xb, Xb, s) respectively denote the transfer matrices
for the uniform and the backwater parts. These matrices have
the same form as the transfer matrix in the uniform case (see
equation (23)). The transfer matrix for the non-uniform case
is denoted as Gn(x,X, s) = (gn

ij(x,X, s)) with

(

u1(x, s)
u2(x, s)

)

=

(

gn
11(x, X, s) gn

12(x, X, s)
gn
21(x, X, s) gn

22(x, X, s)

) (

u1(0, s)
u2(X, s)

)

(24)

The entries of the transfer matrix for the non-uniform case
are given by:

• x < x1:

gn
11(x, X, s) = gu

11(x, x1, s)

+
gu
12(x, x1, s)gu

11(x1, x1, s)gb
21(0, Xb, s)

1 − gu
12(x1, x1, s)gb

21(0, Xb, s)

gn
12(x, X, s) =

gu
12(x, x1, s)gb

22(0, Xb, s)

1 − gu
12(x1, x1, s)gb

21(0, Xb, s)

gn
21(x, X, s) = gu

21(x, x1, s)

+
gu
22(x, x1, s)gu

11(x1, x1, s)gb
21(0, Xb, s)

1 − gu
12(x1, x1, s)gb

21(0, Xb, s)

gn
22(x, X, s) =

gu
22(x, x1, s)gb

22(0, Xb, s)

1 − gu
12(x1, x1, s)gb

21(0, Xb, s)

• x > x1:

gn
11(x, X, s) =

gb
11(xb, Xb, s)g

u
11(x1, x1, s)

1 − gu
12(x1, x1, s)gb

21(0, Xb, s)

gn
12(x, X, s) = gb

12(xb, Xb, s)

+
gb
11(xb, Xb, s)g

u
12(x1, x1, s)gb

22(0, Xb, s)

1 − gu
12(x1, x1, s)gb

21(0, Xb, s)

gn
21(x, X, s) =

gb
21(xb, Xb, s)g

u
11(x1, x1, s)

1 − gu
12(x1, x1, s)gb

21(0, Xb, s)

gn
22(x, X, s) = gb

22(xb, Xb, s)

+
gb
21(xb, Xb, s)g

u
12(x1, x1, s)gb

22(0, Xb, s)

1 − gu
12(x1, x1, s)gb

21(0, Xb, s)

• x = x1:

gn
11(x, X, s) =

gu
11(x1, x1, s)

1 − gu
12(x1, x1, s)gb

21(0, Xb, s)

gn
12(x, X, s) =

gu
12(x1, x1, s)gb

22(0, Xb, s)

1 − gu
12(x1, x1, s)gb

21(0, Xb, s)

gn
21(x, X, s) =

gb
21(0, Xb, s)g

u
11(x1, x1, s)

1 − gu
12(x1, x1, s)gb

21(0, Xb, s)

gn
22(x, X, s) =

gb
22(0, Xb, s)

1 − gu
12(x1, x1, s)gb

21(0, Xb, s)

In the following sections, the notation Gn(θ;x,X, s) will

be used to emphasize the non-uniform transfer matrix for

parameter vector θ.

Fig. 1. Backwater curve approximation

IV. PROPOSED APPROACH

This section uses the input-output transfer matrix

Gn(θ;x,X, s) in Section III-C to obtain a more direct

formulation of the parameter estimation problem (refer to

Problem 1) in which the cost function explicitly incorporates

the constraint. The main idea behind the proposed approach

is to decompose the input variables u1(0, t) and u2(X, t) into

a finite sum of dominant oscillatory modes. In the case of a

river reach influenced by the ocean at the downstream end,

these modes can be thought as the principle modes of exci-

tation produced by the tidal forcing. Under the assumption

of N most dominant oscillatory modes, the input variables

can be expressed as:

u1(0, t) ≅

N
∑

k=0

[

d
(1,0)
k ejωkt + d

(1,0)
k e−jωkt

]

(25)

u2(X, t) ≅

N
∑

k=0

[

d
(2,X)
k ejωkt + d

(2,X)
k e−jωkt

]

(26)

where d
(1,0)
k and d

(2,X)
k , k = 0, . . . , N , are respectively the

Fourier coefficients of the spectral decomposition of u1(0, t)
and u2(X, t). ωk is the set of frequencies used for the modal
decomposition.
Now, the non-uniform transfer matrix Gn(θ;x,X, s) (see
(24)) can be used to compute the output predictions
û1(X, t|θ) and û2(0, t|θ) that go in the definition of the cost
function:

û1(X, t|θ) =

N
∑

k=0

[

α
(1,X)
k (θ)ejωkt + α

(1,X)
k (θ)e−jωkt

]

(27)

û2(0, t|θ) =
N

∑

k=0

[

α
(2,0)
k (θ)ejωkt + α

(2,0)
k (θ)e−jωkt

]

(28)

with coefficients in the equations given by

α
(1,X)
k (θ) = d

(1,0)
k g

n
11(θ; X, X, jωk) + d

(2,X)
k g

n
12(θ; X, X, jωk)

α
(1,X)
k (θ) = d

(1,0)
k g

n
11(θ, X, X,−jωk) + d

(2,X)
k g

n
12(θ; X, X,−jωk)

α
(2,0)
k (θ) = d

(1,0)
k g

n
21(θ; 0, X, jωk) + d

(2,X)
k g

n
22(θ; 0, X, jωk)

α
(2,0)
k (θ) = d

(1,0)
k g

n
21(θ; 0, X,−jωk) + d

(2,X)
k g

n
22(θ; 0, X,−jωk)

Note that the number of modes N in equations (25,26) and
(27,28) is the same because the PDE is non-dispersive. It
should be noted that
gn

ij(θ;x,X,−jωk) = gn
ij(θ;x,X, jωk).

Similarly, the measured output variables u1(X, t) and
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u2(0, t) can be expressed as the infinite sum of response
modes

u1(X, t) =
∞

∑

k=0

[

α
(1,X)
k e

jωkt + α
(1,X)
k e

−jωkt
]

(29)

u2(0, t) =

∞
∑

k=0

[

α
(2,0)
k e

jωkt + α
(2,0)
k e

−jωkt
]

(30)

Substituting the the expressions in equations (27,28,29,30)
in the expression for cost function (18), we obtain:

J (θ; τ ; u(0, ·), u(X, ·))

≅ Ĵ

(

θ; N ;
{

d
(1,0)
k , d

(2,X)
k

}N

k=0
,
{

α
(1,X)
k , d

(2,0)
k

}∞

k=0

)

= 2τ

N
∑

k=0

(

w1

u2
1,norm

∣

∣

∣
α

(1,X)
k (θ) − α

(1,X)
k

∣

∣

∣

2
)

+ 2τ

N
∑

k=0

(

w2

u2
2,norm

∣

∣

∣
α

(2,0)
k (θ) − α

(2,0)
k

∣

∣

∣

2
)

+ 2τ

∞
∑

k=N+1

(

w1

u2
1,norm

∣

∣

∣
α

(1,X)
k

∣

∣

∣

2

+
w2

u2
2,norm

∣

∣

∣
α

(2,0)
k

∣

∣

∣

2
)

(31)

where, the integration has been carried explicitly over [0, τ ],
with τ multiple of the smallest period of the N most
dominant modes. Renormalizing for optimization purposes,
the modified cost function J̄ is defined as:

2τ

N
∑

k=0

[

w1

∣

∣

∣

∣

∣

α
(1,X)
k (θ) − α

(1,X)
k

α
(1,X)
k,n

∣

∣

∣

∣

∣

2]

+ 2τ

N
∑

k=0

[

w2

∣

∣

∣

∣

∣

α
(2,0)
k (θ) − α

(2,0)
k

α
(2,0)
k,n

∣

∣

∣

∣

∣

2]

+ 2τ

∞
∑

k=N+1

[

w1

∣

∣

∣

∣

∣

α
1,X
k

α
(1,X)
k,n

∣

∣

∣

∣

∣

2

+ w2

∣

∣

∣

∣

∣

α
2,0
k

α
(2,0)
k,n

∣

∣

∣

∣

∣

2]

(32)

with α
(1,X)
k,n , α

(2,0)
k,n the normalizing coefficients of the Fourier

coefficients.1

It can be noted that the the third term in the expression of
cost function in (32) does not depend on parameter vector
θ and hence, does not affect the minimization of the cost
function. Therefore, the parameter estimation problem can
be expressed as:

θ̂ = arg min
θ∈DA

J̃

(

θ; N ;
{

d
(1,0)
k , d

(2,X)
k

}N

k=0
,
{

α
(1,X)
k , α

(2,0)
k

}N

k=0

)

(33)

with

J̃

(

θ; N ;
{

d
(1,0)
k , d

(2,X)
k

}N

k=0
,
{

α
(1,X)
k , α

(2,0)
k

}N

k=0

)

= 2τ

N
∑

k=0

[

w1

∣

∣

∣

∣

∣

α
(1,X)
k (θ) − α

(1,X)
k

α
(1,X)
k,n

∣

∣

∣

∣

∣

2

+ w2

∣

∣

∣

∣

∣

α
(2,0)
k (θ) − α

(2,0)
k

α
(2,0)
k,n

∣

∣

∣

∣

∣

2]

(34)

This problem is now an unconstrained optimization problem

and can be solved using standard non-linear programming.

1Note that choosing the same normalizing coefficients for all frequencies
give more weight to the dominant frequencies, while choosing the coef-
ficients of the response output modes as the normalizing coefficients give
same weight to all the selected dominant frequencies.

V. CASE STUDY: THE SACRAMENTO DELTA

In this section, we apply the proposed approach for

estimating parameters for a river reach in the Sacramento-

San Joaquin Delta.

A. Parameter identification problem for a river reach

The Sacramento-San Joaquin Delta in California, USA, is

a complex network of over 1150 km of tidally-influenced

channels and sloughs. The San Joaquin River, with a length

of 530 km, is the second-longest river in the Delta area. The

field of interest for our experiment is the San Joaquin River

reach between DWR and USGS stations (SJL and SJG),

as shown in Figure 2. The available data is the discharge

perturbation, the stage perturbation for the stations SJL, SJG

and the stage perturbation at BDT. The direction of the mean

flow is from SJL to SJG. Measurements are available at

every 900 s. The data was collected between 11/16/2006
and 12/17/2006.

This study makes the following simplifying assumptions:

Fig. 2. DWR satellite stations along San Joaquin River.

the flow is one dimensional; the wavelength of tidal forcing

is long relative to the water stage; lateral and vertical accel-

erations are negligible; pressure distribution is hydrostatic;

the channel geometry is fixed and can be averaged by a

rectangular cross-section; the bed slope is small and water

surface across any cross-section is horizontal.

Consider the station SJL to be the origin and the station

SJG located at abscissa X from the origin. The input

variables are the discharge perturbation at SJL and the stage

perturbation at SJG. The output variables are the discharge

perturbation at SJG and the stage perturbation at SJL. The

parameter estimation problem is to estimate the average free

surface width T0, the average bottom slope Sb, the average

Manning’s coefficient n, the average discharge upstream Q0

and the average downstream stage YX .

B. Spectral analysis

Figure 3 shows the spectral analysis for the total stage at

station SJL. The power spectrum is cutoff at 0.02dB/Hz
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to determine the 27 dominant frequencies. The figure also

compares the measured stage and the stage generated from

the first 27 modes. The results indicate that 27 modes are

enough to capture the signal; the amplitude at 0 Hz is actually

the nominal stage. There are three dominant tidal frequencies

in the system: ω1 = 0.0001407 s−1 (or period 12.4 hrs),

corresponding to the M2 tide generated by the Moon; ω2 =
0.0000727 s−1 (or period 24 hrs) corresponding to the

K1 tide generated by the Sun and a ω3 = 0.000068 s−1

(or period 25 hrs) tide. Similar arguments hold for other
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Fig. 3. Stage Analysis at SJL Station.

measured variables.

C. Parameter identification

This study assumes α
(1,X)
k,n = α

(1,X)
k , α

(2,0)
k,n = α

(2,0)
k

so that each significant frequency has the same weight.

The weighing factors are w1, w2 are chosen to be 1. The

constrained optimization function in MATLAB is used to

identify the parameters listed in Table I. This optimization

process converges quickly leading to the desired estimates.

In this case, the value of optimal cost function is equal to

J̃ = 0.093. The values of T0, Sb, and n are acceptable.

Q0 YX T0 Sb n

11.5 m3s−1 4.04 m 47.00 m 0.0002 0.048 m−1/3s

TABLE I

IDENTIFIED PARAMETERS FOR SAN JOAQUIN RIVER.

The estimated values of Q0 and YX are not as good as the

others, for the expected values are respectively 7.34 m3/s
and 10.0 m. This can be partly explained by recalling that

the transfer matrix for the non-uniform flow Gn(θ;x,X, s)
was derived using the two-pool approximation (see Section

III-C). A further improvement in the non-uniform transfer

matrix might improve accuracy of the predicted steady state

boundary conditions.

The comparison of the predicted and measured outputs is

shown in Figure 4 (that is, the stage perturbation at SJL
and the discharge perturbation at SJG). It can be observed

that the estimated model accurately predicts the measured

output values.
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Fig. 4. Parameter Identification: model output v.s. measurement.

D. Sensitivity

The graphs in figure (5) present the variations of the cost

function J̃ with respect to each parameter. For each graph,

one parameter changes, while all others remain constant at

the values corresponding to the minimum of J̃ . A flat curve

signifies that any other value of the parameter would lead

to the same value of J̃ . In this case, the minimum on each

graph is clearly defined. The cost function appears to be less

sensitive to a variation of the slope. This may be due to the

fact that the flow dynamics of the channel is dominated by

the downstream water depth (backwater part). In that case,

the slope has small influence on the flow dynamics. Thus, it

can be concluded that the objective function and the model

are sensitive enough to successfully evaluate the parameters.

E. Validation

The stage time series at BDT station, along with the given

parameters in Table I, are used to validate the model. From

Figure 6, it can be concluded that the model output gives an

accurate prediction of the validation data.

F. Predictability

The data collected between 12/18/2006 and 2/18/2007

were used to further test the predictive capability of the

model, with the identified parameters given in Table I.

Following the steps described in the previous sections, the

stage outputs at BDT station have been predicted, using the
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Fig. 6. Model Validation: model output v.s. measurement.

discharge data at SJL station and the stage data at SJG station

during the time interval. Comparing with the observed stage

data, it is clear that the model successfully characterizes the

flow, with a good reflection of the stage fluctuation tendency

in the time domain (Figure 7). The cost function in this case

is equal to J̃ = 0.044 which is of the same order as the

optimal cost function for the parameter identification stage

(refer to Section V-C).
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Fig. 7. Model Predictability during 12/18/2006 and 2/18/2007: model

output v.s. measurement.

VI. CONCLUSION

This article proposes a new approach to solve a

parameter identification problem for linear hyperbolic

partial differential equations that are subjected to periodic

forcing. Using frequency domain modeling techniques such

as modal decomposition and approximation of transfer

matrix for the non-uniform steady state case by composing

two (or more) transfer matrices for the uniform case, the

output response can be expressed in terms of the spectral

coefficients of the input excitation and the transfer matrix

coefficients evaluated at appropriate points. The solution

of this forward problem can be used to remove the PDE

constraint in the parameter identification problem. Thus, the

PDE constrained minimization problem reduces to a simpler

non-linear minimization problem.

The approach proposed in this study has been successfully

applied to a river-reach in the Sacramento– San-Joaquin

Delta, where the parameters of the linear Saint-Venant

model as well as the steady state boundary conditions

are estimated based on the measured flow variables at the

boundaries.
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