
Kalman Filter Based Estimation of Flow States in Open Channels
Using Lagrangian Sensing

Mohammad Rafiee*, Qingfang Wu†, and Alexandre M. Bayen‡

*Department of Mechanical Engineering, University of California, Berkeley, CA, 94710-1740 USA
†Environmental Engineering, Department of Civil and Environmental Engineering

University of California, Berkeley, CA, 94720-1710 USA
‡Systems Engineering, Department of Civil and Environmental Engineering

University of California, Berkeley, CA, 94720-1710 USA
Emails: {rafiee, qingfangwu, bayen}@berkeley.edu

Abstract— In this article, we investigate real-time estimation
of flow states, average velocity and stage (water depth), in open
channels using the measurements obtained from Lagrangian
sensors (drifters). One-dimensional Shallow Water Equations
(SWE), also known as Saint-Venant equations, are used as
the mathematical model for the flow. After linearizing and
discretizing the PDEs using an explicit linear scheme, we
construct a linear state-space model of the flow. The Kalman
filter is then used to estimate the states by incorporating the
measurements obtained from passive drifters. Drifters which
are equipped with GPS recievers move with the flow and
report their position at every time step. The position of the
drifters at every time step are used to approximate the average
velocity of the flow at the corresponding locations and time
step. The method is implemented in simulation on a section
of the Sacramento river in California using real data and the
results are validated with a two-dimensional simulation of the
river. Finally, the performance of the method using Lagrangian
sensors is compared to the case of using Eulerian sensors.

I. INTRODUCTION

Data assimilation is a method for estimating the states of
physical systems which originated in meteorology, occeanog-
raphy and hydrology [1], [3], [6], [19]. Data assimilation
incorporates measurements and observations from a physical
process into a mathematical model in order to estimate its
states. The aforementioned physical systems are examples
of distributed parameters systems where the dynamics of the
physical system is modeled by a set of partial differential
equations and the required boundary conditions. In the case
of hydrodynamics, the boundary conditions are typically
measured by sensors installed at the corresponding boundary
of the domain. Nevertheless, there are always uncertainties
and inaccuracies involved in the mathematical model and
the measured (or approximated) boundary conditions. Mea-
surements obtained from the physical system are usually
incorporated into the model via different techniques to com-
pensate for the inaccuracies. Among these techniques, some
common methods include variational data assimilation [7],
filtering based methods [17], [20], optimal statistical inter-
polation [11], or the Newtonaian relaxation [26], [13].

In [9], the authors have used the Ensemble Kalman filter
to perform real-time estimation of a fully nonlinear two
dimensional model of shallow water flows using Lagrangian

measurements of the flow. Lagrangian measurements are
measurements of the flow properties at a point moving with
the flow along the streamline whereas Eulerian measure-
ments are measurements of the flow properties at a fixed
location. Lagrangian sensors which move with the flow and
report their location and possibly other local quantities of
interest (temperature, salinity, etc) are commonly used in
oceanography [8], [23], [18] (usually referred to as drifters)
and in river hydraulics [21].

In this article, we investigate the application of the Kalman
filter using a one dimensional model of the flow. Since
the application of the Kalman filter is pursued, the shallow
water equations are linearized around the steady flow (the
Backwater Curve). After using an explicit linear scheme
to discretize the equations, a linear state-space model is
constructed whose states are the collection of the flow states
and the input is the set of boundary conditions. Note that
although an explicit scheme imposes a limitation on the
choice of the temporal and spatial step sizes, the use of
an explicit scheme (as opposed to an implicit scheme) is
necessary for the construction of a state-space model.

In spite of the fact that the system is essentially nonlinear,
a linear model is expected to perform fairly well for a
reasonable period of time. This is mainly because, in open
channel systems, the variations in the system’s excitation
(the boundary conditions) are expected to occure somewhat
slowly.

As the measurement model, Lagrangian measurements
obtained from a desired number of drifters are used. The flow
measurements are incorporated into the one-dimensional
shallow water model with poorly known boundary conditions
via the Kalman filter to estimate the flow states throughout
the whole domain. Using drifters instead of static sensors is
quite advantageous. Drifters provide cost effective solutions
to sensing problems, they are not constrained to be used only
on a specific channel, and they offer a competitive accuracy
in their measurements.

The rest of this article is organized as follows. In section II,
we describe the mathematical model of flow in open channels
and construct a linear state-space model after linearizing and
discretizing the governing equations. Section III is devoted
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to the building of a set-up for the Kalman filtering using
the measurements obtained from the drifters. In section IV,
we describe the experiment carried out on a two-dimensional
simulation of a section of the Sacramento River with real data
to evaluate the method and results are presented. Finally, in
section V, the conclusion and future subjects of research are
stated.

II. MATHEMATICAL MODEL

A. The Saint-Venant Model

The Saint-Venant equations, which are first order hyper-
bolic nonlinear PDEs, are commonly used to model the flow
in open-channel hydraulic systems [16],[2]. These equations
are obtained from the conservation of mass and momentum.
For one-dimensional flow in a channel of rectangular cross-
section, these equations are:

T
∂H

∂t
+
∂(THV )

∂x
= 0 (1)

∂V

∂t
+ V

∂V

∂x
+ g

∂H

∂x
+ g(Sf − Sb) = 0 (2)

for (x, t) ∈ (0, L) × <+, where L the river reach (m),
V (x, t) the average velocity (m/s) across cross section
A(x, t) = T (x)H(x, t), H(x, t), H(x, t) the stage or water-
depth (m), T (x) the free surface width (m), Sf (x, t) the
friction slope (m/m), Sb the bed slope m/m, g the gravita-
tional acceleration (m/s2). Also, Q(x, t) = V (x, t)A(x, t) is
the discharge across cross-section A(x, t). The friction slope
is empirically modeled by the Manning-Strickler’s formula

Sf =
m2V |V |(T + 2H)4/3

(TH)4/3
(3)

with m the Manning’s roughness coefficient (sm−1/3).

Remark 1: Although, the use of shallow water equations
with discharge and stage as states is more common in
hydrodynamics, we use the equivalent version of the equa-
tions with the average velocity and stage as the states. This
choice is made to reduce the processing of the measurements
obtained from the drifters.

Remark 2: In the channels where the channel width is
considerably greater than the water depth, T � H , an
approximation of Sf , as follows, can be used which will
simplify the linearization

Sf =
m2V |V |
(H)4/3

(4)

Remark 3: Throughout this article, the dependence on the
spatial variable x is occasionally omitted for the sake of
readability.

B. Steady flow: Backwater curve

Backwater curve is the longitudinal profile of the surface
of the water in a non-uniform flow in an open channel when
the water surface is naturally or artificially raised above its
normal level. Denoting the variables corresponding to the

steady state by adding a bar, ·̄, the steady state equations
can be written as:

dV̄ (x)
dx

= − V̄ (x)
H̄(x)

dH̄(x)
dx

− V̄ (x)
T (x)

dT (x)
dx

(5)

dH̄(x)
dx

=
Sb − S̄f

1− F̄ (x)2
(6)

with C̄ =
√
gH̄ the wave celerity, F̄ = V̄ /C̄ the Froude

number. Throughout this article, we assume the flow to be
sub-critical, i.e., F̄ < 1.

Remark 4: In the case of uniform flow, the steady velocity,
V̄ (x) = V̄ , and the normal depth, H̄(x) = Hn, can be
calculated by solving the normal depth equation, S̄f = Sb.

C. Linearized Saint-Venant Model

The Saint-Venant equations are nonlinear in the flow
variables V and H . It is a common practice to linearize
the equations when a linear model of the system is de-
sired [4], [5]. Each term f(V,H) in the Saint-Venant model
can be expanded in Taylor series around the steady state flow
variables V̄ (x) and H̄(x). Considering only the first order
perturbations, f(V,H) ≈ f(V̄ , H̄) + (fV ) |(V̄ ,H̄)v(x, t) +
(fH) |(V̄ ,H̄)h(x, t). The first order perturbations in velocity
(resp. stage) is given by v(x, t) = V (x, t) − V̄ (x) (resp.
h(x, t) = H(x, t)− H̄(x)).

After substituting the expressions of H and V with H̄+h
and V̄ + v in equations (1) and (2) and some manipulation
of terms, the linearized Saint-Venant model for the perturbed
flow variables v and h can be written in the following form

ht + H̄(x)vx + V̄ (x)hx + α(x)v + β(x)h = 0 (7)
vt + V̄ (x)vx + ghx + γ(x)v + η(x)h = 0 (8)

with α(x), β(x), γ(x) and η(x) given by

α(x) =
dH̄

dx
+
H̄

T

dT̄

dx
(9)

β(x) = − V̄
H̄

dH̄

dx
− V̄ (x)
T (x)

dT (x)
dx

(10)

γ(x) = 2gm2 |V̄ |
H̄

4
3
− V̄

H̄

dH̄

dx
− V̄ (x)
T (x)

dT (x)
dx

(11)

η(x) = −4
3
gm2 V̄ |V̄ |

H̄
7
3

(12)

D. Discretization: Lax Diffusive Scheme

We use the Lax diffusive scheme [15] [24] which is a first-
order explicit scheme to discretize the equations. Using f to
represent the dependent variables, v and h, the derivatives
become

∂f

∂t
=
fk+1

i − 1
2 (fk

i+1 + fk
i−1)

∆t
(13)

∂f

∂x
=

(fk
i+1 − fk

i−1)
2∆x

(14)



Applying this scheme to equations (7) and (8), we get:

hk+1
i =

1
2

(hk
i+1 + hk

i−1)

− ∆t
4∆x

(H̄i+1 + H̄i−1)(vk
i+1 − vk

i−1)

− ∆t
4∆x

(V̄i+1 + V̄i−1)(hk
i+1 − hk

i−1)

− ∆t
2

(αi+1v
k
i+1 + αi−1v

k
i−1)

− ∆t
2

(βi+1h
k
i+1 + βi−1h

k
i−1) (15)

vk+1
i =

1
2

(vk
i+1 + vk

i−1)

− ∆t
4∆x

(V̄i+1 + V̄i−1)(vk
i+1 − vk

i−1)

− g∆t
2∆x

(hk
i+1 − hk

i−1)

− ∆t
2

(γi+1v
k
i+1 + γi−1v

k
i−1)

− ∆t
2

(ηi+1h
k
i+1 + ηi−1h

k
i−1) (16)

This scheme is stable provided that the Courant-Friedrich-
Lewy (CFL) condition holds, i.e.

∆t
∆x
|V | ≤ 1 (17)

E. Discrete State-Space Model

Using the discretization of the constitutive equations, we
can form a state-space model as follows

z(k + 1) = Az(k) +Bu(k) (18)

where
z(k) = (vk

2 , · · · , vk
I , h

k
2 , · · · , hk

I )T (19)

and uc(k) is the boundary conditions,

u(k) = (vk
1 , h

k
1)T (20)

hk
i and vk

i are velocity and stage perturbations at cell i at
time k∆t, respectively, and I is the number of cells used for
the discretization of the channel.

III. STATE ESTIMATION SET-UP

A. Process Model

Modeling the uncertainties by adding a noise term w(k)
to the state-space equation (18) leads to

z(k + 1) = Az(k) +Bu(k) + w(k) (21)

The process noise is assumed to be white Gaussian noise
and

E[wkw
T
l ] = Qkδkl (22)

(23)

z0 ∈ Rm is the initial conditions and it is assumed as

z0 = N (z̄0, P0) (24)

B. Measurement Model

The information of the position the drifters equipped with
GPS can be used to obtain Lagrangian measurements of the
flow velocity. Each drifter reports its current position x(k)
at every time step k which is used to calculate the speed of
the drifter at every time step. Since our estimation method
is based on a one-dimensional model of the flow, we have
the drifter released at the center line of the channel and we
assume it stays on the center line as it moves along the
channel. This is a realistic assumption as long as the drifter
is moving on the same channel since the lateral components
of the flow velocity are usually negligible.

Denoting the collection of average velocities obtained
from the drifters at time step k by y(k), the measurement
model can be written as

y(k) = C(k)z(k) + e(k) (25)

where e(k) is the measurement noise on the sensors which
is assumed to be white Gaussian noise and

E[eke
T
l ] = Rkδkl (26)

We also assume that the process an measurement noises and
the initial conditions are all independent.

Note that the observation operator C(k) is time-varying
since the drifters are moving with the flow and therefore the
cells at which the flow velocity is measured is changing over
time.

Defining the mean and the covariance of the estimations
with the following notations

ẑk = E[zk|y0, · · · , yk] (27)

ẑ−k = E[zk|y0, · · · , yk−1] (28)

P−k = Σk|k−1 (29)
Pk = Σk|k (30)

the iterations of the Kalman filter can be written as fol-
lows [12]
Time update:

ẑ−k = Aẑk−1 +Buk (31)

P−k = APk−1A
T +Q (32)

Measurement update:

Kk = P−k C
T
k (CkP

−
k C

T
k +R)−1 (33)

ẑk = ẑ−k +Kk(yk − Ckẑ
−
k ) (34)

Pk = (I −KkCk)P−k (35)

IV. IMPLEMENTATION

A. Experiment Set-up

The method is implemented on a part of the Sacramento
river, upstream of the intersection with the Georgiana slough.
The Sacramento river is a part of the Sacramento-San
Joaquin Delta in California which is an integral part of
California’s water system. The bathymetry of the channel,
shown in Figure 1, is provided by United States Geological



Fig. 1: Bathymetry in Sacramento River. The bathymetry on this section
of the Sacramento River varies from -14m in the deepest part to +2 on the
river banks.

Survey (USGS). The section of interest is of 900m length
and is 85m wide in the narrowest part and 190m wide in the
widest part. For discretization, we divide the channel to 30
cells with each cell being 30m long. This results in a state-
space model with 58 states as described in section II-E.

The so-called forward simulation is performed in a com-
mercial hydrodynamic software TELEMAC 2D [22] to gen-
erate the true state as well as the drifter position data.
TELEMAC uses a streamline upwind Petrov-Gelerkin based
finite element solver for hydrodynamic equations. The mesh
used for the simulation has 1939 nodes and 3525 triangular
elements. The boundary conditions, shown in Figure 3, are
computed using the Delta Simulation Model II (DSM2) [14].
DSM2 is a model of the San Francisco Bay and Sacramento
Delta that provides discharge and surface elevation at various
locations every one hour. The flow diagram of the imple-
mentation procedure is shown in Figure 2. Note that the true
state generated by the 2D simulation in TELEMAC must be
converted to 1D data to be compared with the estimation
results which are based on a 1D model of the flow.

Fig. 2: Flow diagram of the implementation procedure.

The experiment starts at 3:40PM on March 16th 2007.
The simulation runs for two and a half hours before the
experiment so that the effects of the initial conditions are

washed away and the model is stabilized. The time frame of
the experiment is chosen such that the flow variations are as
noticeable as possible. Also, as it can be seen in Figure 3,
there is an abrupt change in the boundary conditions at 4PM.
This enables us to evaluate the performance of the Kalman
filter in estimating the flow states in case of sudden changes
in the condition of flow.

0 100 200 300 400 500 600 700 800
0.155

0.16

0.165

0.17

0.175

0.18

0.185

Time step

A
ve

ra
ge

 V
el

oc
ity

 (
m

/s
)

0 100 200 300 400 500 600 700 800
6.192

6.194

6.196

6.198

6.2

6.202

6.204

6.206

6.208

6.21

Time step

A
ve

ra
ge

 S
ta

ge
 (

m
)

Fig. 3: The boundary conditions (a) the average velocity (b) the stage.

At 3:40PM, a single drifter is released at the upstream
end of the river. The drifter moves with the current and its
position is recorded at every time step. The trajectory of the
drifter is illustrated in Figure 5. The data assimilation starts
as soon as the drifter is released and it ends when the drifter
reaches the downstream end of the river, at 4:18PM. At each
time step, the velocity of the drifter is approximated by the
difference between its current and previous position divided
by the time step, ∆t, which is chosen to be 3 seconds in this
experiment. This gives us a measurement of the velocity of
the current at the position of the drifter at every time step.

We assume that the initial values of velocity and surface
elevation at the last cell are available to us. These values
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Fig. 4: The time evolution of the estimated velocity and the true velocity at (a) the 5th cell, (b) the 12th cell, (c) the 19th cell and (d) the 25th cell.

are required to compute the backwater curves. However,
we assume the boundary conditions are not available to
us, i.e. there is no static sensor infrastructure available in
the system. Therefore, in the stochastic state-space model,
equation (21), the input u(k) is assumed to be a constant,
e.g. an approximation of its initial value. This assumption
makes the method suitable for being used for estimation in
the channels where there is no static sensor infrastructure
available since the only measurement device needed for the
estimation is a single drifter.

B. Numerical Results

Figure 4 shows the estimated velocity and the true velocity
at four different cells.

Figure 6 shows the time evolution of the relative error of
the estimated velocity which is calculated using the following
formula

error(k) =

√√√√∑Ncell

i=1 (uk
i − ûk

i )2∑Ncell

i=1 (uk
i )2

(36)

where uk
i and ûk

i are the true and estimated values of the
velocity at cell i and time step k.

As it can be seen in Figure 6, the relative error decreases
rather quickly and reaches below 2% at time step 50 and
remains below 2% until time step 400. After time step
400, ignoring the fluctuations, the error increases relatively
rapidly. Note that time step 400 corresponds to 4pm which is
the time when an abrupt change in the boundary conditions
occurs. In fact, the increase in the error after time step 400
is due to the fact that the deviation of the state of the system
from the steady state around which the system has been
linearized gets too large as a result of the abrupt change
in the boundary conditions. Furthermore, as it can be seen
in Figure 4, after time step 400, there are some noticeable
fluctuations in the system which is in fact as a result of the
fluctuations in the velocity boundary conditions which can
be seen in Figure 3. In spite of the abrupt change and also the
oscillations in the forcing function of the system, the relative
error stays well below 14% until the end of the experiment.
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Fig. 5: Trajectory of the drifter.

The computational cost of the method is very reasonable.
In the above experiment with a state-space model of 58
states, each iteration of the Kalman filter takes less than 1
millisecond on a 2.4GHz Pentium dual core processor.

Note that although the dynamic of the physical system
is nonlinear, the Kalman filter which uses a linear model
of the system performs very well. The main reason is that
system states stay in a reasonable distance from the steady
state around which the system has been linearized. This is
because the variations in the excitations, i.e. the boundary
conditions, are quite moderate which is the case in most
open channel systems.

C. Lagrangian vs. Eulerian

We performed the method again with exactly the same set-
up, but this time by using measurements of the flow obtained
from an Eulerian (static) sensor instead of a drifter. In this
case, there is only a static sensor located at the 6th cell of the
channel which measures the average velocity of the water at
this location.

Figure 6 shows the relative error of the estimated velocity
in case of using measurements obtained from one static
sensor. As it can be seen from the figure, the trend of the time
evolution as well as the numerical values of the relative error
are quite similar to the case of using a single Lagrangian
sensor.

This comparison justifies the fact that while production,
deployment and maintenance of Lagrangian sensors cost
much less than Eulerian sensors, they offer quite similar
performance in estimating the flow states in open channels.

V. CONCLUSIONS AND FUTURE WORKS

In this article, we presented a method to estimate the
flow states in an open channel using passive drifters. The
drifters are only required to be equipped with a GPS reciever
and a trasmitter-reciever device for communication with
the computational unit. Using the position of drifters at
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Fig. 6: The time evolution of the relative error of the estimated velocity
while using (a) a Lagrangian sensor (drifter) (b)an Eulerian (static) sensor.

every time step, measurements of the flow velocity at the
corresponding locations are obtained. The Kalman filter,
based on a linear 1D shallow water equations, was used
to estimate the current flow states by incorporating the
online measurements of the flow velocity. The results of
the implementation of the method using a 2D simulation
of a section of the Sacramento River with real data was
presented. We compared the estimation results while using
a single drifter with the case of using a static sensor, which
is capable of measuring the flow velocity (or discharge) at
a location at which it is installed. The performance of the
method in both cases was shown to be very similar.

Requiring basic and cheap equipments, having a very low
computational complexity and yet offering an outstanding
performance, the method presented here seems quite practi-
cal for real-time studies of the flow in open channels and irri-
gation systems and also for control purposes. Particularly, in
channel systems where no sensing infrastructure is available,
a number drifters can be deployed to carry out the method.



The drifters can be released in the water at the beginning of
the study and be retrieved in the end to be used in the future
again.

Data assimilation in a network of interconnected channels
is considered in a companion paper, [10], where a Quadratic
Programming (QP) based method is presented to estimate
the open boundary conditions of the network. The QP-based
method is appropriate for the situations where an accurate
model of the flow is desired for a longer period of time, after
all data have been collected. Unlike the Kalman filter based
method, the QP-based method does not provide estimates in
real time, however, it can use an implicit linear model of
the flow which allows choosing a relatively large time step.
Implementing the Kalman filter based method on complex
networks of interconnected channels by deploying a fleet of
drifters is a subject of future research. Performing the method
in a field test, [25], is also a future research topic.
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