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Abstract— We present a method for assimilating Lagrangian
sensor measurement data into a Shallow Water Equation model.
Using our method, the variational data assimilation problem is
formulated as a Quadratic Programming problem with linear
constraints. Data obtained from drifting sensors that gather
position and velocity information in the modeled system can
then be used to refine the estimate of the initial conditions of
the system. The algorithms are implemented using a new sensor
network hardware platform for gathering flow information
which is also presented in this article. The data assimilation
method is used to integrate data collected using the hardware
platform. Validation of the results is performed by comparing
them to an estimate derived from an independent set of static
sensors, some of which were deployed as part of our field
experiments.

I. INTRODUCTION

Renewable freshwater is a critical resource for human
society. Human uses of freshwater include drinking, irriga-
tion, fish production, transportation, hydroelectric power, and
waste disposal; the growing world population, and societal
shifts towards urbanization and water-intensive agriculture,
will increase freshwater demand significantly over the next
fifty years [19]. Improving water use efficiency can help
balance supply and demand [13] and relieve scarcity; this
will require improved methods for modeling and monitoring
the flow of freshwater through the hydrological cycle [20].
As part of this system, river flows are particularly important
to investigate, as they constitute the majority of available
renewable freshwater [17].

River hydraulics can be modeled with shallow water
equations (SWE) in one or two dimensions [3]. Shallow
water equations are a standard tool used in the environmental
engineering community and hydraulics community to model
river flow; they are commonly used for simulation and con-
trol. When dealing with experimental measurements, tech-
niques are required to incorporate them into the model. One
such technique is data assimilation, which is the process of
integrating measurements into a flow model, and originated
in meteorology and oceanography [5]. Techniques for data
assimilation include variational methods [15], Kalman filter-
ing and its extensions [7], optimal statistical interpolation
[14], and Newtonian relaxation [18].

There are many different sensor systems for measuring
flow fields. They can be categorized as Eulerian or La-

grangian (using terminology from fluid mechanics) accord-
ing to whether they observe the medium as it flows past
a fixed location (Eulerian) or are embedded into the flow
itself, measuring the medium while moving along a trajectory
(Lagrangian).

Examples of Eulerian sensors for water velocity mea-
surement are Acoustic Doppler Current Profilers (ADCPs),
which measure the Doppler shift in a returning acoustic
pulse due to velocity; satellite imaging [21], in which the
river height is estimated directly with radar or indirectly
by observing the water/shore interface; and stream gauges,
which measure the height of the water at one location,
which can be used to infer the stream velocity under certain
conditions.

The trends of electronics miniaturization and availability
of wireless communications have increased the interest in
novel Lagrangian sensor systems, which sometimes provide
an efficent way to complement static sensing infrastruc-
ture with mobile devices capable of sensing where fixed
equipment cannot be deployed. The estimate of system state
is usually more useful in Eulerian coordinates, however,
which requires new data assimilation methods to bring the
Lagrangian data into an Eulerian context. Most known imple-
mentations of Lagrangian data assimilation are in oceanog-
raphy or meteorology (see for example [9],[16], and [15]);
in the specific case of hydraulic systems, Lagrangian data
assimilation of shallow water flows to estimate the bottom
topology was attempted in [10]. Assimilation of Lagrangian
data to estimate boundary conditions in a tidally influenced
river was described in [22], and assimilation into a 1D
model for a network of channels was described in [28].
An assimilation technique on a simplified hydrodynamic
model was presented in [26]; we extend this work with a
more realistic model, as well as a complete treatment of
the experimental method, numerical schemes, and hardware
platform.

Our objective in this article is the development of an inte-
grated system, including hardware, software, communication,
and visualization, that is capable of performing data assimi-
lation for shallow water flows using GPS measurements from
drifting, Lagrangian sensors. This sensor data is assimilated
into a partial differential equation (PDE) model of the river,
for which, in general, we do not have knowledge of the initial



conditions (ICs) or boundary conditions (BCs) of the system.
The contributions made in this article are described below:
• A linearization of the (SWE) that can be used for formu-

lating the optimization problem with linear constraints,
• An inversion algorithm, using Quadratic Programming

(QP), which takes Lagrangian measurements and uses
them for reconstruction of the distributed state,

• The construction of a hardware data gathering infras-
tructure; a floating sensor network used to gather La-
grangian flow data, presented for the first time in this
article,

• A field operational test in the Georgiana Slough, and our
additional instrumentation deployment for validation
purposes,

• Our validation procedure and results.
An earlier version of the linearization and variational as-
similation formulation presented herein was developed for
shallow water flows in [23], for a different mathematical and
operational context.

This article is organized as follows: In Section II, we
describe the PDE used to model the hydrodynamical systems
under study. In Section III, we explain the QP variational
assimilation method we use. In Section IV, we introduce
the Lagrangian floating sensor platform for gathering exper-
imental data. In Section V, we describe a field experiment
performed in the Sacramento River in California, the results
of our assimilation method, and the results of our validation
procedure. Finally, in Section VI we present the conclusions
of our study and suggest future avenues for research.

II. HYDRODYNAMIC MODEL

A. Shallow water equations
In the following, we use the SWE as our constitutive hy-

drodynamic model. We will present the equations, followed
by a specific linearization and discretization. For legibility
we suppress the arguments for dependent variables. The
governing hydrodynamic equations for the modeled system
are [6], [27]:

∂u

∂t
+ ~u · ∇u = −g ∂η

∂x
+ Fx +

1
h
∇ · (hνt∇u) (1)

∂v

∂t
+ ~u · ∇v = −g ∂η

∂y
+ Fy +

1
h
∇ · (hνt∇v) (2)

∂h

∂t
+ ~u · ∇h+ h∇ · ~u = 0 (3)

where (x, y) are space coordinates; t is time in seconds;
~u = (u(x, y, t), v(x, y, t)) is depth-averaged water velocity
in m/s; h = h(x, y, t) is water depth in meters; b = b(x, y) is
elevation of bottom surface in meters; η = h+b = η(x, y, t)
is free surface elevation in meters; g is the acceleration of
gravity in m/s2; νt is the coefficient of turbulence diffusion,
obeying the so called k-epsilon model [6]; and Fx =
Fx(x, y, t), Fy = Fy(x, y, t) are friction terms

Fx = − 1
cos θ

gm2

h4/3
u
√
u2 + v2 (4)

Fy = − 1
cos θ

gm2

h4/3
v
√
u2 + v2 (5)

where θ = θ(x, y) is the slope of the river bed; m is the
Manning coefficient. The Manning coefficient is an empirical
term that depends on the roughness of the bed, affected by
both vegetation and geology. For this study we took the
Manning coefficient to be 0.04 uniformly over the domain.

Following common assumptions in fluvial hydraulics, our
first simplification is to neglect the turbulence terms. We lin-
earize the equations about a steady flow U0(x, y), V 0(x, y),
H0(x, y) that satisfies equations (1), (2) and (3):
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∂y
= −g ∂h
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∂x
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∂x
+ V 0 ∂v
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∂x
+
∂v

∂y

)
= 0 (8)

with the choice of

C =
1

cos θ
gm2

H04/3

√
U02 + V 02 (9)

as the linearized friction coefficient.

B. Non-orthogonal curvilinear grid

Figure 1. Example of non-orthogonal curvilinear axes. OX , OY :
global Cartesian axes. OX′,OY ′: local non-orthogonal curvilinear axes.
xCL, yCL, xCV, yCV: unit vectors in the various curvilinear directions.

For general geometries, the river region does not line up
well with the Cartesian axes. Discretizing using a Cartesian
mesh would be inefficient; the grid size would have to be
very fine in order to capture the spatial features properly.
Fitting a non-orthogonal mesh to the river is a standard
practice which provides better numerical performance. The
coordinate changes are characterized by the deviation of the
local axes from the Cartesian axes, called α and β, respec-
tively (see figure 1) [8]. When working with water velocity
in the curvilinear system, we must distinguish between the
curvilinear (or covariant) velocity, whose components are



parallel with the local axes, and the contravariant velocity,
whose components are perpendicular to their complementary
axes (see figure 1). Covariant velocity, denoted by uCL, vCL
is used for the momentum-balancing equations (1) and (2),
while contravariant velocity, denoted by uCV, vCV is used for
the mass-balancing equation (3).

The conversions between the three forms of velocity are
easily computed:

[
uCL
vCL

]
= sec(α− β)

[
cosβ sinβ
− sinα cosα

] [
u
v

]
[
u
v

]
=
[
cosα − sinβ
sinα cosβ

] [
uCL
vCL

]
[
uCV
vCV

]
= sec(α− β)

[
cosα sinα
− sinβ cosβ

] [
u
v

]
[
u
v

]
=
[
cosβ − sinα
sinβ cosα

] [
uCV
vCV

]
[
uCV
vCV

]
=
[

sec(α− β) tan(α− β)
tan(α− β) sec(α− β)

] [
uCL
vCL

]
[
uCL
vCL

]
=
[

sec(α− β) − tan(α− β)
− tan(α− β) sec(α− β)

] [
uCV
vCV

]
All other variables have trivial transformations, and we

will abuse notation by not distinguishing them from their
original forms. For brevity, we will use γ as a shortcut for
(α− β).

The linearized shallow water equations (6), (7) and (8) are
transformed into the curvilinear coordinates [8]:
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∂h
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(12)

These transformed equations are algebraically more in-
volved, but from a practical perspective, simply add static
trigonometric terms to the discretized scheme (16), (17),
(18), to be derived next. They require that the velocity com-
ponents be transformed back and forth between Cartesian
and curvilinear axes. In particular, linearity is preserved.

C. Boundary conditions

For the boundary conditions, we imposed a condition
that there be no velocity component perpendicular to the
shoreline:

~u · ~s
∣∣
∂Ωland

= 0 (13)

where ~s = ~s(x, y) is a vector perpendicular to the shoreline,
and ∂Ω is the boundary of the domain. No-slip conditions
(~u
∣∣
∂Ωland

= ~0) are also commonly used, but are inappropriate
for a linear scheme, since shear forces arise from the non-
linear terms in the original momentum equations (1), (2). We
assume that the bathymetry is steep enough at the shore that
the water height will not significantly affect the location of
the land boundary.

This constraint is enforced on the curvilinear mesh by
forcing the uCV or vCV component of the water velocity at
specific nodes to zero.

The upstream velocity and downstream height boundary
conditions are implicitly defined as being equal to the value
at the initial condition:

~u(t)
∣∣
∂Ωupstream

= ~u(0)
∣∣
∂Ωupstream

(14)

h(t)
∣∣
∂Ωdownstream

= h(0)
∣∣
∂Ωdownstream

(15)

This is an appropriate assumption for assimilation over short
times compared to the tidal cycle.

D. Discretization

We use an implicit discretization scheme, consisting of
backward Euler for the time derivative and centered dif-
ferencing for the spatial derivatives. We use the covariant
velocity variables. The mass conservation equation (12) uses
contravariant velocity, not covariant velocity, which means
an additional transform is necessary, as can be seen in (18).

uk+1
CLi,j − uk

CLi,j

∆t
=− U0

CLi,j

uk+1
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k+1
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CLi,j (16)
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where the subscript indexes i and j are for the x and y grid
directions, respectively; the superscript index k is the time
index; ∆t is the time step; ∆xi,j is the distance between
node (i, j) and (i+ 1, j); and ∆yi,j is the distance between
node (i, j) and (i, j + 1).

III. QUADRATIC PROGRAMMING BASED VARIATIONAL
DATA ASSIMILATION

Our method uses variational data assimilation. The vari-
ables in the discretized equations (16), (17), and (18) are
concatenated into vectors, using the standardized framework
set out in [11], as follows:
Xn Concatenated vector of state variables (u, v, h) for all

mesh points at time tn.
XB Background term vector to guarantee well-posedness

of the problem.
Yn Vector of observed variables at time tn.
B Covariance matrix of the background error (the vec-

tor difference between the initial state X0 and the
background term XB).

Rn Covariance matrix of the observation error at time tn.
Hn Observation operator, which projects the state vector

Xn into the observation subspace containing Yn.
Our variational data assimilation strategy is to search for
the initial state X0 that minimizes the `2 norm of the
difference between the state and observation variables and
the difference between the initial state and the background
term XB :

J 0(X0) = (X0 −XB)TB−1(X0 −XB)

+
nmax∑
n=0

(Yn −Hn[Xn])TR−1
n (Yn −Hn[Xn])

(19)

Without the background term, the problem is likely to be ill
posed, as the number of points in the mesh far outnumbers
the number of measurements. With the background term
influencing the solution at the initial time, and the PDE con-
straints linking each point in the solution to its antecedents,
the problem is well-posed. The background term could be
derived from historical data, from forecasts, from a previous
assimilation, or from forward simulation based on boundary
conditions (either observed or artificially generated). The
covariance matrices B and Rn affect the weight given to
the background term and the observations. In the absence
of second-order statistics, they can be approximations rep-
resenting the assumed reliability of the different sources
of information. As a simplifying assumption we take these
matrices to be a scalar times the identity matrix: bI and rI,
respectively.

The observation operator Hn is often treated as a non-
linear operator; however, as described in Section IV, our
observations come with both location and velocity infor-
mation. Our assimilation method is a posteriori, so our
knowledge of the observation positions can be used to
represent the observation operator as a time-varying matrix.
In the simplest case, where the assimilation time steps match
the observation times, the Hn matrix would be a {0, 1}
matrix, with element (i, j) = 1 if the drifter associated with
measurement i was in the cell associated with state variable
j at time n. If drifter measurements are not synchronized
with assimilation steps, then the values in the Hn matrix
should reflect the polynomial approximation associated with
the time discretization scheme. For example, for a single
step method such as the backward Euler scheme, a drifter
observation would be mapped into two Hn matrices using
linear interpolation. This mapping can be generalized to any
linear multi-step method.

The search space for the variational data assimilation is
the initial condition of the solution to the linearized, discrete
PDE; by the implicit definition of the boundary conditions,
we are at the same time searching for the upstream velocity
and downstream height boundary conditions. Appropriate
choices for B and Rn mean that the cost function can be
represented as a positive semidefinite quadratic term. The
discretized dynamics of the flow are represented as a series
of linear constraints of the form

EXn+1 = FXn + g
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Figure 2. Drifter hardware.

where E, F are matrices determined by the time and space
difference schemes (16), (17) and (18), and g is a vector
capturing source terms that doe not depend on the state,
such as the bottom elevation. There is no requirement that
E be invertible, which means that implicit schemes can be
implemented in this formulation. This broadens the applica-
bility of the method significantly; implicit methods are not
constrained by the Courant-Friedrichs-Lewy (CFL) stability
condition on the time step. Sequential assimilation methods,
such as the Kalman filter and variations, are restricted to
explicit schemes by the nature of their update process. The
time step used in these methods is restricted by the CFL
condition and can often be inconveniently short. In addition,
it is difficult to assimilate initial conditions (which are part
of the unknown search space) using sequential methods.

With a positive semi-definite quadratic cost function and
linear constraints, the data assimilation problem can be posed
as a QP problem

minimize 1
2x

T Px + qT x

subject to Gx ≤ h

Ax = b

The variables in bold are from standard optimization formu-
lations [2] and should not be confused with the variables
used in the rest of this article. In particular, note that x is
the vertical concatenation of all state vectors X0 . . . Xnmax ,
P and q are found by expanding all the terms in (19) and
combining into a single quadratic expression. The equation
Ax = b represents the flow dynamic constraints described
above. G and h are normally zero, although we may impose
heuristic inequality constraints to reduce the search space, in
particular for initial and boundary conditions.

IV. HARDWARE PLATFORM

We now present the floating sensor network hardware
platform that was developed to gather Lagrangian flow data
in shallow water environments and used to gather the data
presented later in this article. Interior and exterior photos of
the drifter device are shown in Figure 2.

The drifter fleet, consisting of ten units, was designed and
manufactured in the Lagrangian Sensor Systems Laboratory
at UC Berkeley. Design goals included low cost, ease of

manufacture and service with in-house techniques, 48 hour
mission autonomy, stable hydrodynamic configuration, rota-
tionally symmetric profile, and an internal volume sufficient
for electronics and future water sensors.

Drifter housing. The housing of the drifter is based
around a 11 cm ID fiberglass pipe. The top cap is vacuum-
formed polycarbonate. The lower shell is hand-cast fiber-
glass. The top hull and bottom hull are joined with epoxy
to machined aluminum flanges, which seal against the main
bulkhead with O-Rings and spring-loaded clamps. The bot-
tom hull is watertight in generation one, but will be modified
into a flooded bay for water-facing sensors in generation two.

Drifter drogue. A 1.3 m aluminum tube is attached to
a lug in the lower hull with a cotter pin. At the opposite
end of the tube, two polycarbonate plates, 40 cm square, are
mounted diagonally. This puts a large drag component 1.0 m
below the drifter hull, which makes the drifter be driven
primarily by the current below the surface as opposed to the
wind-mixed layer that may be present at the surface.

Electronics. The main challenge of the electronics design
was the selection and integration of the various modules.
Cost, power consumption, voltage compatibility, communi-
cation protocols, and mechanical footprint were the main
selection criteria. Harness wiring was kept to a minimum by
integrating the three major modules (CPU, GPS, and GSM)
onto a single printed circuit board, which also provided
mechanical support.

• Power: The drifter carries a 10.4 amp-hour, 3.7 volt
lithium ion battery.

• Gumstix: The main computational unit is a Basix 400-
BT from Gumstix Inc. This embedded module contains
a 400 MHz Marvell XScale PXA255 processor capable
of running an embedded Linux distribution [12]. It has
a 1 GB MMC card.

• GPS: The GPS receiver is a Magellan AC-12 OEM
module. It has a CEP of 1.5 m, and can record pseudo-
range and carrier phase data for post-processing [25].

• Cell Phone: A Telit GM-862 GSM module is used for
communication. TCP connections can be made with
home base servers via AT&T’s GPRS service [24].
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V. FIELD TEST

A. Available data

The proposed architecture and platform is designed to
solve practical problems for which several types of informa-
tion are available. The following is a list of the data sources
used by the data assimilation method:

• Drifters: The Lagrangian sensors record their position
with GPS as they advect through the water. They also
record a GPS velocity signal, which we use directly
(as opposed to deriving velocity from the successive
positions using a finite difference scheme). We built ten
drifters; in the experiments presented here, up to eight
were deployed at a time.

• DSM-II Historical Data: DSM-II [1] is a one dimen-
sional model of the entire Sacramento/San Joaquin
Delta. It was used to generate historical flow and height
values for the background.

For validation purposes, we also gathered Eulerian data
at the boundaries of the region of interest, using sensors de-
scribed below. This data was used as the boundary conditions
for a forward simulation using TELEMAC, a commercial
hydrodynamics simulator. TELEMAC is essentially a spe-
cialized PDE solver for the shallow water equations; given
the initial conditions and boundary conditions, it finds the
velocity at all points in the mesh through a forward simula-
tion of the equation. Since actual measurement of the initial
conditions was unavailable, we used the standard technique
of starting with an arbitrary initial condition, holding the
boundary conditions steady, and running the simulation for
a long time, essentially “washing away” the arbitrary initial
condition. This technique is only appropriate for systems that
are close to a steady state, which is a reasonable assumption
for the slowly-changing river.

The Eulerian data includes the following items (see Fig-
ure 4):

• Acoustic Doppler Current Profiler (ADCP): This Eule-
rian sensor was installed by our group near the upstream
boundary of the region of interest. It sits on the bottom
of the river and measures the water velocity in the
vertical column over it. This data allows estimation of
the upstream flow boundary condition.

• USGS Gauge Stations: These Eulerian sensors measure
flow and height. One sensor in the Sacramento River
and one in the Georgiana Slough provide information
about the downstream boundaries.

The list of data sources must also include the bathymetry
and Manning parameters. The bathymetry is used in the QP
assimilation (see equations (6), (7) and (8)). The TELEMAC
forward simulations that generate the background term and
validation data use both the bathymetry and the Manning
parameters.

The data flow diagram in Figure 3 shows how the var-
ious data are used. Historical DSM-II data is used, with
TELEMAC 2D [6] forward simulations, to generate the
background term for the QP process. The estimate of the state
of the system is generated by assimilating the drifter data.
The Eulerian sensors are used with TELEMAC to generate
a separate state estimate that is used for Eulerian validation.

B. Experimental strategy

Eight drifter deployments were performed from Novem-
ber 12 to November 16, 2007, at the junction of the
Georgiana Slough and Sacramento River in California. This
location was chosen for the USGS field gauges which could
be used for Eulerian validation.

For each experiment, between seven and ten drifters were
placed in the water by personnel in a small motorcraft. The
initial positions were in a roughly straight line across the
river, with approximately even spacing, but in the center
of the river to avoid obstacles and shallow areas on the
sides. Figure 5 depicts an example of the drop points used in
experiment 4 on November 16. The drifters were monitored
as they travelled in the river. Each experiment was planned
to last between 45 and 60 minutes; in practice, some of the
experiments were terminated earlier. Reasons for terminat-
ing the experiment included (i) drifters travelling past the
junction, eliminating line of sight, (ii) drifters spacing out
too far, making them difficult to monitor, (iii) miscellaneous
logistical concerns.

With the development of short-range and long-range wire-
less communication capabilities on the drifters, the hardware
infrastructure is designed to let the drifters operate au-
tonomously, without direct line of sight supervision, allowing
for experiments with expanded domains in space and time.

Figure 6 shows the water velocity at the ADCP versus
time over the five day experimental period. The start times
of the eight experiments are shown with “x” marks. The
velocity time series was processed with a low-pass filter
(zero-phase, cutoff frequency 7.85× 10−5Hz, corresponding
to a period of 3.54 hour, generated by the Parks-McClellan
optimum filter algorithm [4]). To better show the length of
the experiments, and their relationship to the tidal cycle, the



filtered velocity signal for all five days was superimposed in
figure 7, referenced to the minor maximum of the velocity.

Post-experiment analysis showed that several drifters did
not record GPS data all the time; in most cases this was
traced to antenna connection problems. This reduced the
number of operating drifters at a given time to between five
and eight. Only four of the eight experiments had enough
data to proceed with the assimilation method.
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Figure 4. Sacramento River/Georgiana Slough with modelled area, ground
stations, and sensor deployment locations. Image courtesy of USGS.

C. Implementation of the algorithm

The drifter measurements were sampled at 30s. Each
drifter measurement was assigned according to its GPS
location to a specific cell of the curvilinear mesh, and the
GPS velocity was converted to curvilinear coordinates. The
DSM-II historical data was then used to generate boundary
conditions for a TELEMAC forward simulation to generate
the background term. A QP problem was formulated using
the drifter measurements and the background term for the
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Figure 5. Example of drop points for drifter release in the final experiment.
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Figure 7. Experiment times shown relative to minor velocity peak.

cost function, and the curvilinear, discretized, linearized PDE
equations as linear constraints, as described in Section III.
The drifters do not gather information about the water
height. The friction source term was set to zero. The QP
problem was expressed using the optimization modeling
language AMPL and solved with CPLEX. The optimal initial
condition was extracted from the CPLEX solution, and the
curvilinear velocity field was converted back to the Cartesian
grid.

One feature of the QP formulation is that the number of
sensors can vary with time, simply by adding or removing
the necessary terms from the cost function (19). This is
advantageous, because in practice there are often gaps in the
GPS tracks of the drifters (as they pass underneath bridges,
or experience similar signal loss). Instead of trying to patch
the holes in the record with some sort of interpolation, the
data can be passed as-is to the QP assimilation process.

D. Validation

A forward simulation of the region of interest was per-
formed using the data from Eulerian sensors. This data was
used as the boundary conditions for a SWE simulation, to
generate what we will call the “true state” velocity field.
This forward simulation does include the river bed friction
term. The relative error between the true state, (uT , vT ), and
the estimated initial condition velocity field from the QP
process, (u, v), was computed by dividing the `2 norm of
the difference by the magnitude of the simulated field:

εE(k) =

√√√√√
∑

j

(uTj − uj)2

+(vTj − vj)2

/∑
j

(
u2

Tj + v2
Tj

)
(20)
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where j is the node index.

E. Results

Figure 8 shows the initial flow field condition assimilated
by the QP algorithm for one of the experiments. The velocity
information is displayed both in vector and magnitude plots.
The height variable is very smooth (differing by only a few
centimeters over the region) and not interesting to plot. Only
one experiment is shown for space constraints. Figure 9
shows how the QP assimilated velocity field is closer to the
true state (generated by forward simulation from Eulerian
sensors) than the background term.

Using a 2000-point mesh (16 cells across the river, 118
cells down the reach of the Sacramento segment), each QP
assimilation takes approximately 10 minutes on a single
2.0GHz processor.

VI. CONCLUSION

In this article, we present a method for formulating the
variational data assimilation problem for Lagrangian sensors
in shallow water flows as a quadratic programming optimiza-
tion problem with linear constraints. A major advantage of
the quadratic programming formulation is that the constraints
can express the model partial differential equation discretized
with an implicit scheme. This differentiates our method from
sequential methods such as the Kalman filter, and allows our
method to use longer time steps than explicit methods. Our
method also assimilates on the initial conditions, in contrast
to many sequential methods.

The quadratic programming assimilation method relies on
a background term, as many variational data assimilation
methods do, both to guarantee well-posedness and to provide
a “first guess” to the system. The metric used to evaluate
the assimilation performance is the improvement made in
relative error versus a true state. Care was taken to ensure
that the true state used distinct information; the assimilation
process relied on historical data (for the background term)
and Lagrangian sensor data, while the true state was simu-
lated from local Eulerian sensors. (Both sides use the same
bathymetry and Manning parameter data, but this is not a
major issue).

Run 1: assimilated velocity field (initial condition)

Run 1: magnitude of the assimilated initial condition
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We also present a new sensor network platform for gath-
ering Lagrangian flow information. The drifters described
herein provide an inexpensive flow measurement capability.
With the appropriate assimilation techniques to process their
data, they open up new possibilities for modeling and un-
derstanding shallow water systems in regions where Eulerian
sensing is too expensive or otherwise unavailable.

Our new hardware platform was demonstrated and vali-
dated in a set of experiments that gathered flow information
in a river junction environment. The assimilation procedure
demonstrated an improved relative error to the assumed
ground truth.

Further work will focus on demonstrating larger relative
error improvements using refinements of the technique. The
partial differential equations used in our model are appro-
priate for unsteady as well as steady flows; the flows we
study in this experiment are technically unsteady (due to
the tidal influence), but the rate of change is very slow.
Heuristically adding constraints to restrict the quadratic pro-
gramming solution to “almost steady” flows would reduce
the search space, which could allow for greater weight on
the measurements. Ultimately, we hope to demonstrate a
method that can produce useful assimilations even when the
background term is severely different from the true state.

VII. ACKNOWLEDGEMENTS

The authors would like to thank Prof. Mark Stacey for providing the
deployable Eulerian sensors used for validation, and Maureen Downing-
Kunz and Julie Percelay for assisting with their deployment. Julie Percelay
also provided valuable assistance with the TELEMAC forward simulations
used herein. The hardware development project relies on the hard work and
ingenuity of many undergraduates and interns, including Andrew Spencer,
Jason Wexler, Jonathan Ellithorpe, Jean-Severin Deckers, Nahi Ojeil, Tarek
Ibrahim, and Anwar Ghoche.

REFERENCES

[1] J. Anderson and M. Mierzwa. DSM2 tutorial, an introduction to
the Delta Simulation Model II (DSM2). Technical report, State of
California, Department of Water Resources, 2002.

[2] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge
University Press, Cambridge, 2004.

[3] A. Chadwick, J. Morfett, and M. Borthwick. Hydraulics in Civil and
Environmental Engineering. Spon Press, London, 2004.

[4] D. S. P. Committee, editor. Programs for digital signal processing.
IEEE Press, New York, 1979.

[5] F. X. L. Dimet and O. Talagrand. Variational algorithms for analysis
and assimilation of meterological observations: theoretical aspects.
Tellus, 38A:97–110, 1986.

[6] EDF. Telemac 2D. version 5.2. Technical report, EDF, 2003.
[7] G. Evensen. Data Assimilation: The Ensemble Kalman Filter.

Springer-Verlag, New York, 2007.
[8] K. George. A depth-averaged tidal numerical model using non-

orthogonal curvilinear co-ordinates. Ocean Dynamics, 57(4–5):363–
374, 2007.

[9] J. R. Gunson and P. Malanotte-Rizzoli. Assimilation studies of open-
ocean flows. J. Geophys. Res., 101:28457–28472, 1996.

[10] M. Honnorat, J. Monnier, and F.-X. L. Dimet. Lagrangian data
assimilation for river hydraulics simulations. In European Conference
on Computational Fluid Dynamics. ECCOMAS CFD, Egmond aan
Zee, The Netherlands, 2006.

[11] K. Ide, P. Courtier, M. Ghil, and A. Lorenc. Unified notation for data
assimilation: Operational, sequential and variational. J. Met. Soc. of
Japan, 75(1B):71–79, 1997.

[12] Intel. Intel PXA255 Processor Design Guide, 2003.
[13] R. B. Jackson, S. R. Carpenter, C. N. Dahm, D. M. McKnight, R. J.

Naiman, S. L. Postel, and S. W. Running. Water in a changing world.
Ecological Applications, 11(4):1027–1045, 2001.

[14] A. Molcard, L. Piterbarg, A. Griffa, T. Özgökmen, and A. Mariano.
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