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Abstract— An inverse modeling problem for systems gov-
erned by first-order, hyperbolic partial differential equations
subject to periodic forcing is investigated. The problem is
described as a PDE constrained optimization problem with the
objective of minimizing the norm of the difference between
the observed inputs and the model outputs. After linearizing
and discretizing the governing equations using an implicit
discretization scheme, linear constraints are constructed which
leads to a quadratic programming formulation of the estimation
problem. The utility of the proposed approach is illustrated by
considering a channel network in the Sacramento San-Joaquin
Delta in California, subjected to tidal forcing. The dynamics
of the hydraulic system are modeled by the linearized Saint-
Venant equations. The available data are the drifter positions as
they circulat in the experiment domain. The inverse modeling
problem is to estimate open boundary conditions by considering
a finite number of dominant tidal modes. It is shown that
the proposed method gives an accurate estimation of the flow
variables at the boundaries and intermediate locations within
the system.

I. INTRODUCTION

The Sacramento San Joaquin Delta in California is expe-
riencing drastic declines in fresh water resources, while the
water demand

in California is increasing. Large-scale numerical flow
models, such as DSM2 [3] and REALM [3], sponsored by
the California Department of Water Resources, have been
used as crucial water resources management tools, providing
information about tidal forcing and salinity transport in
the bays and channels of the Delta. A number of factors
affect the performance of these state-of-the-art models, such
as parameter calibration, mesh generation, and choice of
numerical solver. More importantly, the performance of the
model largely relies on the determination of open boundary
conditions.
Traditionally, these open boundary conditions are obtained
either via Eulerian observations near the boundaries, such
as tidal gauge data, or through satellite data retrieval. Un-
fortunately, these measurements for large watershed have
their intrinsic limitations, such as small coverage and sparse
sampling [13]. Furthermore, installed Eulerian sensors are
proven to have many failures, such as broken gauges, process
leaks, sensor drifts, improper use of measuring devices, and
other random sources [1].
In the last two decades, the techniques using surface and
subsurface Lagrangian buoys have been significantly devel-
oped. The Lagrangian data, in particular those collected from
surface drifters, provide information about the flow which

can be used to describe flow advections and eddy dispersions.
For this reason, Lagrangian data have been highly valued
and extensively used in numerous meteorologic and oceanic
models [2] [18]. The Lagrangian data assimilation problem
can be approached in different ways, including variational
method [15], ensemble Kalman filtering [21] [8], optimal
statistical interpolation [12], and Newtonian relaxation [16].
In this article, we present a quadratic programming (QP)
based method introduced by [22] [20] to determine the
open boundary conditions in tidal channel networks by using
Lagrangian measurements of the flow. More specifically, we
derive the velocity field in a channel network solely from
the position information collected by drifters. The proposed
method is to minimize the norm of the difference between the
drifter observations and model velocity predictions, subject
to the constraints given by discretized linear equations. One
of the major contributions of this article is to pose the
problem of estimating the open boundary conditions of a
channel network as a quadratic programming problem by
minimizing a quadratic cost function and posing the con-
straints as a set of a linear form of equalities and inequalities.
The proposed quadratic program can be solved using fast and
robust algorithms, , and it is capable of providing reliable
open boundary conditions for any flow simulations.
To verify the proposed QP method, we investigate a dis-
tributed network of channels, subject to quasi-periodic tidal
forcing, in the Sacramento-San Joaquin Delta. The main
obstacle of applying a linear model in the channel networks is
the well-known tidal trapping phenomenon [9]. The trapping
mechanism makes water elevation and velocity not in phase,
which results in the flow dispersion and eddy diffusion at
the junctions of channels. The drifter trajectory at these
junctions, because of the turbulent mixing processes, usually
display a stochastic spaghetti-like shape, which is indicative
of slow currents. Another contribution of the article is to
successfully assimilate this chaotic drifter data, and, as a re-
sult, the channel network system can be adequately simulated
using one-dimensional Linear Saint Venant Model.
The article is organized as follows: Section II introduces
the mathematical flow model in open channels. A linear
Saint Venant model in a single river reach is derived after
linearizing and discretizing the governing equations. A linear
channel network model is constructed considering the flow
compatibility condition at the junctions of channels. Section
III formulates the quadratic programming method withby
applying standard data assimilation techniques. Section IV
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describes the experiment protocol in the Sacramento San
Joaquin Delta, and displays the drifter trajectory generated
by nonlinear Shallow Water Model simulations. Section V
shows the application of the inverse modeling procedure. The
effectiveness of the method is substantiated by correlating the
model estimations with field data at selected locations in the
network. Section VI summarizes our studies and presents the
scope of future work.

II. HYDRODYNAMIC MODEL IN TIDAL CHANNEL
NETWORK

A. Saint-Venant Model

The Saint-Venant equations are non-linear hyperbolic
PDEs that describe the dynamics of one-dimensional flow
in open-channel hydraulic systems [5],[7]. For a rectangular
cross-section, these equations are given by:

Yt + (V Y )x = 0 (1)
Vt + V Vx + gYx + g (Sf − Sb) = 0 (2)

for (x, t) ∈ (0, L)×<+, where L is the river reach m, V (x, t)
is the average velocity (m/s) across cross-section A(x, t) =
T (x) · Y (x, t), Y (x, t) is the water-depth (m), T (x) is the
free surface width (m) for rectangular cross-section, Sf (x, t)
is the friction slope (m/m), Sb is the bed slope m/m,
g is the gravitational acceleration (m/s2). The boundary
conditions are V (0, t) = V0(t) and Y (L, t) = Y0(t). The
initial conditions are given by V (x, 0) and Y (x, 0) for
x ∈ [0, L]. The friction slope is empirically modeled by the
Manning-Strickler’s formula

Sf =
V 2n2(T + 2Y )4/3

(TY )4/3
(3)

where n is the Manning’s roughness coefficient (sm−1/3).
Under the proper constant boundary conditions, equations
(1), (2) admit a steady state solution. Let the flow variables
corresponding to the steady state condition be denoted by
V0(x), Y0(x) etc. where x ∈ [0, L]. The steady state
equations are given by

V0(x)
dY0(x)
dx

+ Y0(x)
dV0(x)
dx

= 0 (4)

dY0(x)
dx

=
Sb − Sf0

1− F0(x)2
(5)

where C0 =
√
gY0 is the wave celerity, F0 = V0/C0 is the

Froude number and V0 is the steady state velocity. In this
article, we assume the flow to be sub-critical (F0 < 1) and
non-uniform.

Remark 1 (Non-Uniform flow.): In case of natural chan-
nels, the shape, size, and slope may vary along the stream
length x. In the case of non-uniform flow, the flow variables
vary along the length of the channel: the velocity V0(x) 6=
V0 6= VX and the stage Y0(x) 6= Y0 6= YX .
This non-uniform flow can be best approximated using a
backwater profile model [10] [11].

B. Linearized Saint-Venant Model

Equation (2) of the Saint-Venant model is nonlinear in the
flow variables V and Y . Each term f(V, Y ) in the Saint-
Venant model can be expanded in Taylor series around the
steady state flow variables V0(x) and Y0(x). Considering
only the first order perturbations: f(V, Y ) ≈ f(V0, Y0) +
(fV )0 v(x, t) + (fY )0 y(x, t) where the first order perturba-
tions in velocity (resp. stage) is given by v(x, t) = V (x, t)−
V0(x) (resp. y(x, t) = Y (x, t)−Y0(x)). The linearized Saint-
Venant model for the perturbed flow variables v and y is:

yt + Y0(x)vx + V0(x)yx +
dY0(x)
dx

v − α0(x)y = 0 (6)

vt + V0(x)vx + gyx + β0(x)v − γ0(x)y = 0 (7)

with α0(x), β0(x) given by:

α0(x) =
V0(x)

Y0(x)

dY0(x)

dx
(8)

β0(x) =
g

V0(x)

[
2Sb − (2− F 2

0 )
dY0(x)

dx

]
(9)

γ0(x) =
4T0g

3Y0(x)(T0 + 2Y0(x))

[
Sb − (1− F 2

0 )
dY0(x)

dx

]
(10)

In the above equations, to emphasize that the free surface
width T is uniform, it is denoted as T0 and the dependence
on x is omitted for readability. The upstream and down-
stream boundary conditions are respectively given by the
upstream velocity perturbation v(0, t) and the downstream
stage perturbation y(X, t). The initial conditions are given
by y(x, 0) = 0 and v(x, 0) = 0 for all x ∈ [0, X].

C. One-dimensional numerical scheme

The Preissman implicit finite difference scheme [4] is
applied to these equations (6), (7):

f(x, t) ≈ θ

2
(fk+1
j+1 + fk+1

j ) +
1− θ

2
(fkj+1 + fkj ) (11)

∂f

∂x
≈ θ

fk+1
j+1 − f

k+1
j

∆x
+ (1− θ)

fkj+1 − fkj
∆x

(12)

∂f

∂t
≈
fk+1
j+1 + fk+1

j − fkj+1 − fkj
2∆t

(13)

where f(x, y) is the flow variables (either v or y in our case),
θ ∈ (0, 1) is a time weighting coefficient, denotes the space
step and k the time step. This scheme has the advantage
of allowing non-equidistant grids ∆x and is unconditionally
stable as long as θ > 0.5. This enables a more flexible
schematization of the river, especially in the case of strongly
varying cross sections. The time step is a function of the
required accuracy only and can be chosen freely.
The discretization form of equation (6), (7) can be written
as:



yk+1
j+1 + yk+1

j − ykj+1 − ykj
2∆t

=

−Y0(x)

[
θ
vk+1
j+1 − v

k+1
j

∆x
+ (1− θ)

vkj+1 − vkj
∆x

]

−V0(x)

[
θ
yk+1
j+1 − y

k+1
j

∆x
+ (1− θ)

ykj+1 − ykj
∆x

]

−
dY0(x)

dx

[
θ

2
(vk+1
j+1 + vk+1

j ) +
1− θ

2
(vkj+1 + vkj )

]
+α0(x)

[
θ

2
(yk+1
j+1 + yk+1

j ) +
1− θ

2
(ykj+1 + ykj )

]
(14)

vk+1
j+1 + vk+1

j − vkj+1 − vkj
2∆t

=

−V0(x)

[
θ
vk+1
j+1 − v

k+1
j

∆x
+ (1− θ)

vkj+1 − vkj
∆x

]

−g
[
θ
yk+1
j+1 − y

k+1
j

∆x
+ (1− θ)

ykj+1 − ykj
∆x

]

−β0(x)

[
θ

2
(vk+1
j+1 + vk+1

j ) +
1− θ

2
(vkj+1 + vkj )

]
+γ0(x)

[
θ

2
(yk+1
j+1 + yk+1

j ) +
1− θ

2
(ykj+1 + ykj )

]
(15)

Using the discretization form of the linearized Saint-Venant
Equations (14) (15), the linear model for a single channel i
can be represented as:

Ek,iXk+1,i = Ak,iXk,i +Bk,iUk,i (16)

where Xk,i is the state variable

Xk,i = (vk,i,1, yk,i,1, · · · , vk,i,li , yk,i,li)T (17)

Uk,i is boundary conditions at time k∆t

Uk,i = (vk,i,1, yk,i,li)
T (18)

where li denotes the downstream point of each channel i, and
1 is the upstream point of each channel i. Ek,i, Ak,i and Bk,i
are matrices determined by numerical method above. vk,i,j
and yk,i,j are the velocity and stage perturbation at location
j∆x at time k∆t in channel i.

D. Linear Network Model

A linear channel network model can be constructed by
decomposing the channel network into individual channel
reaches, and apply the linear model (16) to each branch.
The internal boundary conditions are also imposed at every
junction to ensure flow compatibility. Considering a simple
river junction illustrated in Figure 1, the linear equations
of hydraulic internal boundary conditions at a junction are
specified by equations of mass and energy conservation.
Assuming no change in storage volume within the junction,
the continuity equation can be expressed by:

vk,1,li · T1 = vk,2,1 · T2 + vk,3,l · T3

When the flows in all the branches meeting at a junction
are subcritical, the equation for energy conservation can be
approximated by a kinematic compatibility condition as:

yk,1,li = yk,2,1 = yk,3,1

Channel 3

Channel 1
Channel 2

1
2

3

Internal BC

External BC

External BC

External BC

Fig. 1. Flow compatibility of channel junctions

The equations are assembledfor each individual channel and
interior junctions together to model the entire network. The
flow variables inside the domain are represented by a linear
relationship:

EkXk+1 = AkXk +BkUk (19)

where Xk is the concatenated vector of Xk,i and Uk is the
boundary conditions of the channel network system.
The boundary conditions of (23) are given by

Uk =
[
u(k, i, j)|∂Ωupstream , y(k, i, j)|∂Ωdownstream

]
(20)

and initial conditions given by

X0 = 0 (21)

The linear network model parameters are the average free
surface width T0,i, the average bottom slope Sb,i, the average
Manning’s coefficient n, the average velocity V0,i, and the
average downstream stage Yli,i for each channel i (i =
1, · · · , 13). These parameters are known to us experimen-
tally.

III. VARIATIONAL DATA ASSIMILATION USING
QUADRATIC PROGRAMMING

A. General Considerations

In this section, open boundary condition estimation is
formulated using the information of velocity and position
measurements provided by a number of drifters which are
released in a channel network. Following standard proce-
dure in variational data assimilation, the cost function used
by this article consists minimizing the difference between
measured velocity at the location of the drifter and velocity
estimated by the model. With the linear model constrain, the
problem can be formulated as a QP and solved efficiently.
Furthermore, under the assumption that tidal flow variables
can be expressed by dominant oscillatory modes, the number
of estimation variables is extremely reduced.

B. Notations

We employ the traditional notation of variational data
assimilation in discrete time and space [17]:
• Xk : Vector of state variables (v, y) for each mesh point

at time k∆t.
• Yk : Vector of observed variables at time k∆t.
• Rk : Covariance matrix of the observation error at time
k∆t.



0 1 2 3 4 5 6

x 10
−4

0

500

1000

1500

2000
Detecting frequencies in the signal − discharge @ SDC

P
ow

er
 s

pe
ct

ru
m

 (
di

sc
ha

rg
e/

H
z)

Frequency (Hz)

O1

K1

N2 M2

MK3
M4

M6

Fig. 2. Spectral analysis of the discharge at the SDC Station.

• Hk : Observation operator, which projects the state
vector Xk into the observation subspace containing Yk.

We deploy D passive drifters in the network to collect
Lagrangian measurements of the velocity in the system, and
try to estimate boundary conditions by minimizing the `2-
norm of the error between the observed data and the the
corresponding model predictions:

J =
∑
k

(Yk −Hk[Xk])TR−1
k (Yk −Hk[Xk]) (22)

This positive semi-definite quadratic cost function is con-
strained by:

EkXk+1 = AkXk +BkUk (23)

In this way, the variational data assimilation problem can be
posed as a Quadratic Programming problem:

min
1
2
XTPX + qTX

s.t. GX ≤ h
FX = b (24)

where X is the concatenated vector of Xk from time 0 to
the final time step; P is a symmetric matrix and q is vector
containing the information of Yk, Hk and Rk; F and b are
the block diagonal matrix of Ak and Bk. Normally G and
h are 0, and the QP can be solved by a linear system. In
our case, we may impose heuristic inequality constraints to
reduce the search space.

C. Decision Variables

The decision variables of the QP problem (24) are the flow
variables at the open boundaries. If it is expressed in the time
domain, the number of decision variables would be equal to
the number of boundaries times the number of time steps.
Using spectrum analysis, it is obvious that flow variables in a
tidal system can be modeled by seven dominant tidal modes,
as seen in Figure 2,
These dominant tidal modes are listed in Table I. Thus, any
flow variables at the boundaries can be specified as:

u(k∆t) ≈
7∑
l=0

[
dle

jωlk∆t + dle
−jωlk∆t

]
(25)

TABLE I
THE DOMINANT TIDAL MODES IN SACRAMENTO DELTA

Tide Tide Period(hours) Tl Tide Frequency (s−1) ωl = 2π
Tl

K1 23.9345 7.2921 · 10−5

M2 12.4206 1.4082 · 10−4

MK3 8.1771 2.1344 · 10−4

M4 6.2103 2.8104 · 10−4

M6 4.1202 4.2360 · 10−4

O1 25.8193 6.7598 · 10−5

N2 12.6584 1.3788 · 10−4

where ωl = 2π
Tl

is the frequency associated with one of the
seven dominant tidal periods. The decision variables of this
inverse modeling problem become the unknown coefficients
dl corresponding to specified tidal frequencies for each
boundary to be estimated. In this way, the number of decision
variables is reduced, which speeds up the convergence of QP
process.

IV. EXPERIMENT PREPARATION

A. Experiment Protocol

The following is a description of an experiment to test
the proposed method. The intuitive way to test it is to
assimilate field Lagrangian data into our linear model and
compare estimated the boundary conditions with Eulerian
measurements at the boundaries. Since the field instrument
development and data collection is still under process, the
Lagrangian drifter data in the article is generated by using
Telemac 2D [19], a fully nonlinear Shallow Water Equation
(SWE) solver, with an unstructured triangular grid mesh and
finite element method. The virtually simulated drifter data
will be replaced by hardware experiment field measurements
in future studies.
A set of fixed Eulerian U.S. Geological Survey (USGS) sen-
sors (see Figure 3(a)) on this hydraulic system is employed
as the boundary conditions for the model simulation, and
a finite number of passive drifters are released virtually in
the experiment period. During the inverse modeling process,
only these simulated drifter data are used to re-construct
open boundary conditions, which are then compared with
the initial boundary setting. Another set of USGS Eulerian
sensors along with the deployed fixed Acoustic Doppler
Current Profiling (ADCP) instrumentation and Water Pres-
sure Sensors (see Figure 3(b)) are used to validate the flow
characteristics inside the experiment domain. The flow chart
of the experiment process is shown in Figure 4.

B. Two-dimensional Shallow Water Equations and Numeri-
cal Forward Simulation

In this subsection, we will set the forward simulation and
introduce the Lagrangian measurements.

1) Two-dimensional Shallow Water Equations: The gov-
erning hydrodynamic equations for forward simulation are



(a) USGS Sensor station (b) Deployable ADCP sensor

Fig. 3. Left: USGS Sensor station at GSS, used as a measurement sensor.
Right: ADCP sensor deployed in the Sacramento River, used in Section 5.3
for gathering the validation data
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Fig. 4. Data Assimilation Flow Diagram. The red box denotes the
part which in the future will be replaced by hardware experiment filed
measurements.

[19]:

∂h

∂t
+ ~u · ∇h+ h∇ · ~u = 0 (26)

∂u

∂t
+ ~u · ∇u = −g ∂η

∂x
+ Fx +

1
h
∇ · (hνt∇u) (27)

∂v

∂t
+ ~u · ∇v = −g ∂η

∂y
+ Fy +

1
h
∇ · (hνt∇v) (28)

The friction forces are given by the following Manning law:

Fx = − 1
cosα

gn2

h4/3
u
√
u2 + v2 (29)

Fy = − 1
cosα

gn2

h4/3
v
√
u2 + v2 (30)

(31)

where h is the total depth of water, ~u = (u, v) is the velocity
in the domain, g is the gravity acceleration, η is the free
surface elevation, νt is the coefficient of turbulence diffusion,
α is the bed slope of river bottom, and n is the Manning
coefficient. The boundary condition and initial condition are

given by:

u(x, y, t)|∂Ωland
= 0, v(x, y, t)|∂Ωland

= 0 (32)
(u(x, y, t), v(x, y, t))|∂Ωupstream = f(x, y, t) (33)

η(x, y, t)|∂Ωdownstream
= g(x, y, t) (34)

u(x, y, 0) = u0, v(x, y, 0) = v0, h(x, y, 0) = h0, (35)

where ∂Ω represents the boundaries of our computational
domain and f , g are known functions.

2) Lagrangian drifters: The deployed drifters is modeled
as passive Lagrangian tracers. In this framework, the drifters
move with the local flow streamline, obeying the following
equations:

dxD(t)
dt

= u[xD(t), yD(t), t] (36)

dyD(t)
dt

= v[xD(t), yD(t), t] (37)

with the drifter initial conditions

xD(t) = xD,0, yD(t) = yD,0 (38)

3) Numerical solution: The numerical solution of the 2D
shallow-water equations and drifter positions, is computed
using a commercial hydrodynamic software Telemac 2D
[19]. Telemac 2D uses a streamline upwind Petrov-Galerkin
based finite element solver for hydrodynamic equations. The
turbulence and mixing process at the estuaries are considered.
To generate the drifter data, a forward simulation is run
from time t0 to time t1 with given boundary conditions
to stabilize the flow. At t1, drifters are released randomly
inside the domain and their trajectories are simulated using
a Runge-Kutta method and the velocity field provided by
the nonlinear shallow water forward simulation. The data as-
similation process estimated the boundary conditions, which
are compared with the previously given boundary conditions,
along with the flow variables at intermediate locations within
the watershed.

V. CASE STUDY: THE SACRAMENTO DELTA

A. General introduction the the Sacramento Delta

The Sacramento-San Joaquin Delta in California is a valu-
able fresh water resource and an integral part of California’s
water system. This complex network covers 738,000 acres
interlaced with over 1,150 km of tidally-influenced channels
and sloughs. This network is monitored by a static sensor
infrastructure subject to the usual problems of inaccuracy and
measurement errors for sensing systems. The area of interest
for our experiment covers Sacramento River, Cache Slough,
Steamboat Slough, Sutter Slough, Minor Slough, Delta Cross
Channel and Georgiana Slough as shown in Figure 5. Most
of the time, the direction of mean river flow is from north to
south, as indicated with arrows. During the tidal inversion,
the water flows in the opposite way.
Ten USGS stations, named HWB, RYI, SRV, HWV, SUT,

SSS, SDC, DLC, GES, and GSS, are scatterly located in
this experiment field. The stations are marked as diamonds in



Fig. 5. Experiment area in the Sacramento River (1), Cache Slough (2),
Steamboat Slough (3), Sutter Slough (4), Minor Slough (5), Delta Cross
Channel (6) and Georgiana Slough (7).

Figure 5. Both velocity and stage are collected every 900 sec-
onds at these stations. Note that in the USGS measurement
system, only the stage are measured directly. The velocity
data is estimated by a rating curve, which is a relation
between stream stage and stream flow. The relation of stream
stage to stream flow is always changing, and need to be
calibrated frequently. It will introduce errors if the rating
curve has not been validated in time.
The field data was collected between 11/12/2007 0:00am to
8:30am. In addition, the following simplifications for the flow
model have been made in this study:
• The flow can be represented by a one dimensional

model.
• The channel geometry is fixed, as the effects of sed-

iment deposition and scour are negligible during the
experiment period.

• The channel geometry can be modeled by a rectangular
cross-section.

• The lateral and vertical accelerations are negligible.
• The pressure distribution is hydrostatic.
• There is no significant jump along the bathymetry of

the channel, and the bed slope is smooth and small.
• The water surface across any cross-section is horizontal.

B. Drifter Data Generation

Telemac 2D is used to perform a non linear flow simu-
lation using velocity data measured by USGS station SRV,
RYI, GSS, and stage data measured by DLC and SUT. The
geometry of the area is complex; thus we use an unstruc-
tured finite element mesh (41375 nodes, 74983 triangular
elements). The bottom friction is modeled using Manning’s
law. The Manning coefficient is chosen to be constant in
time and space, and equal to 0.02, corresponding to a straight
gravel bottom [6]. The turbulence process is included such
that the flow streamline at the estuaries are similar to the real
world. The simulation runs for two and a half hours before

the release of the drifters so that a stable state is reached. The
drifters are released from 2:30AM to 6:30PM on November
11th 2007. This time period was chosen to capture the highly
variable flow in Sacramento Delta. We release a total of 39
drifters during the experiment (6 hours). The first thirteen
drifters are released at 2:30AM on the centerline of selected
sub-channels. Then at 4:30AM, 6:30am we release another
two sets of thirteen drifters respectively. Drifter positions are
recorded every 60 seconds until the end of the experiment
at 8:30AM. Figure 6 shows the drifter trajectories and the
snapshots of the drifter positions corresponding to the three
releases of the drifters.

C. Implementation of the algorithm

Following the method described in III, we assimilate the
drifter data generated by TELEMAC (as described in V-
B) to reconstruct the boundary conditions at SRV, RYI,
GSS, DLC and SUT. The reconstructed boundary condition
data is shown and compared to measured data in Figures
7. From the figures, the estimated data is very close to
the measurements. The QP problem was expressed by the
optimization modeling language AMPL and solved with
CPLEX. With 13 sub-channels, the assimilation process takes
approximately 65 minutes to compute with a 2.33 GHz
Pentium dual core processor.

Without loss of generality, the flow variables measured
by USGS sensor GES, SDC, SSS, HWB and the velocity
and stage data recorded by selective deployable UC Berkeley
sensors (marked as grey circles Figure 5) are used to achieve
the model validation. The simulation results are shown in
Figure 8.

The difference between the modeled data and measure-
ments is further evaluated in Table II. Three primary evalu-
ation measures are analyzed here:
• The maximum value is the maximum difference be-

tween the estimated and measured data at the same time
steps.

• The coefficient of efficiency E is defined as [14]:

E = 1−

[∑N
i=1(ûi − ui)

2∑N
i=1(ui − ui)2

]
(39)

where ui is the flow variable of interest (for example vi
or yi in this study), ûi is the modeled flow variable, ui
is the mean of ui, for i = 1 to N measurement events.
If the measured data is perfect, E = 1. If E < 0, the
corresponding measurement is not reasonable and must
be excluded from the modeling procedure.

• The correlation coefficient ρ is given by:

ρ =

∑N
1 (ui − ui)(ûi − ûi)√∑N

1 (ui − ui)2
∑N

1 (ûi − ûi)2
(40)

where ûi represents the mean of model estimated flow
for i = 1 to N measurement events. If the measured
data is perfect, rho = 1

Figure 8 and Table II thus indicate that the proposed ap-
proach provides a good accuracy in the flow estimation.



(a) Time Step 0

(b) Time Step 120

(c) Time Step 240

Fig. 6. Drifter trajectories and their release positions. 13 drifters are
released time step 0 (∗), 13 drifters at time step 120 (�) and 13 drifters
at time step 240 (∆) . The drifter positions are recorded every 60 second
until the end of the experiment.
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(a) Valocity Variability with Time at USGS station: RYI
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(b) Valocity Variability with Time at USGS station: SRV
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(c) Valocity Variability with Time at USGS station: GSS
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(d) Valocity Variability with Time at USGS station: DLC
Fig. 7. Comparison of the estimated boundary condition with USGS
measurements at the boundary of the domain.

TABLE II
MAX-VALUE, ρ-VALUE AND E-VALUE FOR MODELED DATA AND

MEASURED DATA

Variable USGS Station Max-value E-value ρ-value

Velocity

GES 0.05 m/s 0.9930 0.9975
SDC 0.04 m/s 0.9368 0.9883
SSS 0.055 m/s 0.9968 0.9985

ADCP 0.07 m/s 0.9435 0.8923

Stage

GES 0.05 m 0.9889 0.9947
SDC 0.12 m 0.9504 0.9759
SSS 0.07 m 0.9847 0.9935

Pressure Sensor I 0.06 m 0.8479 0.8743
Pressure Sensor II 0.06 m 0.9345 0.8734

VI. CONCLUSIONS

In this article we have presented a boundary condition
estimation method for complex channel networks using La-
grangian measurement data. The solution is formulated as a
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(a) Valocity Variability with Time at USGS station: GES
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(b) Valocity Variability with Time at USGS station: SSS
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(c) Valocity Variability with Time at USGS station: SDC
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(d) Valocity Variability with Time at USGS station: ADCP
Fig. 8. Validation of the model output with USGS and ADCP measurements
inside of the domain.

QP problem based on minimizing the difference between
measured Lagrangian data and modeled drifter trajectory,
constrained by a 1D implicit linear channel network model.
A major advantage of the 1D QP formulation is that requires
low computational cost, which makes the method applicable
to vast and complex networks of open channels. Modal
decomposition allows the estimated output be expressed in
terms of dominant tidal frequency. This reduces the number
of decision variables, which substantially lower computa-
tion complexity. The performance of the method has been
demonstrated using a experiment setting in which the drifter
data were generated by a 2D nonlinear shallow water model.
From the results, the performance of the method has been
validated.
Future works using the method include the use of real data
collected from the GPS equipped drifters deployed in the
Sacramento San Joaquin Delta. The effects of different de-
ployment strategy and number of drifter on the performance

of the method is also of interested.
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