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Abstract. This article presents the comparison of two algorithms for data
assimilation of two dimensional shallow water flows. The first algorithm is
based on a linearization of the model equations and a quadratic program-
ming (QP) formulation of the problem. The second algorithm uses Ensemble
Kalman Filtering (EnKF) applied to the non-linear two dimensional shallow
water equations. The two methods are implemented on a scenario in which
boundary conditions and Lagrangian measurements are available. The perfor-

mance of the methods is evaluated using twin experiments with experimentally
measured bathymetry data and boundary conditions from a river located in the
Sacramento Delta. The sensitivity of the algorithms to the number of drifters,
low or high discharge and time sampling frequency is studied.

1. Introduction. The modeling and monitoring of river hydraulics are increasingly
important as they provide drinkable water for populations as well as irrigation for a
variety of crops. These flows are usually modeled using the shallow water equations,
whether in a one or two dimensional formulation [10]. In this approximation, the
flow is assumed to be nearly horizontal and the water column well-mixed. Since
these models are an approximation of the flow, they are bound to gradually drift
away from the physical phenomenon. An accurate modeling requires the use of
experimental measurements to keep the model accurate with respect to the actual
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flow. Data assimilation, which originated several decades ago in the fields of meteo-
rology and oceanography [6, 22], consists in incorporating experimentally measured
observations into a model in order to enhance its predictive capability. Over the
years, a number of different techniques have been introduced, some of which rely
on variational methods [24] while others use Kalman filtering and its extensions
[12, 21], optimal statistical interpolation [23], or more empirical techniques such as
the nudging method [19, 26].

Flow field measurements can be obtained through various types of sensors which
can be broadly divided into two categories originating from a fluid dynamics termi-
nology: Lagrangian and Eulerian sensors. Namely, Eulerian sensors are fixed sensors
which measure the properties of the flow that goes by them, whereas Lagrangian
sensors are moving with the flow. Recently, Lagrangian sensors have gained in
popularity in part due to the increased miniaturization of electronic devices and
also due to the advantages they present over their Eulerian counterparts. Among
these we will mention a noticeably reduced unit cost, portability and versatility.
However, when using Lagrangian sensors, the measured variables will be expressed
in Lagrangian coordinates and therefore will be different from the state variables
used in the forecast model which is usually written in Eulerian coordinates. As
will be shown in the following, this will require using specific methods to assimilate
Lagrangian data. Until recently, data assimilation of Lagrangian measurements has
been applied mainly to oceanography [13, 14, 19, 21, 23, 25, 28, 30] and meteorol-
ogy [20, 24]. One of the first attempts to perform Lagrangian data assimilation for
shallow water flows was made in 2006 in [16]. In the present article, we present two
data assimilation methods applied to river flows, namely, a novel algorithm based on
Quadratic Programming (QP), and an algorithm using Ensemble Kalman Filtering

(EnKF). In particular, we analyze their respective sensitivity to measurement accu-
racy, number of sensors and time sampling frequency. We compare their respective
performance and robustness through twin experiments, using experimentally mea-
sured bathymetry and boundary conditions from a river located in the Sacramento
Delta in California. In this case, the Lagrangian sensors are drifters which float
along the river recording the position at regular instants in a way which reproduces
typical GPS measurements.

This article is organized as follows. In Section 2, the two-dimensional shallow
water equations and the equations describing the trajectories of Lagrangian drifters
are presented. In Section 3, the QP algorithm is developed. The linearization
of the model equations and their discretization as an implicit numerical scheme
which will be used in the form of constraints in the QP are derived. The problem
statement is presented in an optimization framework. In Section 4, the EnKF
algorithm is presented based on the fully non linear equations. In Section 5, the two
algorithms are then evaluated and compared using twin experiments. In particular,
their sensitivity to the number of drifters, low or high discharge and time sampling
frequency is studied. Finally, in Section 6 conclusions and suggestions for future
work are given.
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2. Hydrodynamic model. The governing hydrodynamic equations for the mod-
eled system are [27, 32]:

∂u

∂t
+
−→
U · ∇u = −g

∂η

∂x
+ Fx +

1

h
∇ · (hνt∇u) (1)

∂v

∂t
+
−→
U · ∇v = −g

∂η

∂y
+ Fy +

1

h
∇ · (hνt∇v) (2)

∂h

∂t
+
−→
U · ∇h + h∇ ·

−→
U = 0 (3)

The friction forces are given by the following Manning law:

Fx = −
1

cosα

gm2

h4/3
u
√

u2 + v2 (4)

Fy = −
1

cosα

gm2

h4/3
v
√

u2 + v2 (5)

where h is the total depth of water,
−→
U = (u, v) is the velocity field, g is the

gravitational acceleration, η is the free surface elevation, νt is the coefficient of
turbulence diffusion obeying the so called k-epsilon model [27], α = α(x, y) is the
slope of the bottom, and m is the Manning coefficient. Finally, t is time and x, y

are horizontal space coordinates.
The boundary and initial conditions are given by

u(x, y, t)
∣

∣

∂Ωland
= 0, v(x, y, t)

∣

∣

∂Ωland
= 0, (6)

(u(x, y, t), v(x, y, t))
∣

∣

∂Ωupstream
= f(x, y, t), (7)

η(x, y, t)
∣

∣

∂Ωdownstream
= g(x, y, t), (8)

u(x, y, 0) = u0(x, y), v(x, y, 0) = v0(x, y), h(x, y, 0) = h0(x, y), (9)

where ∂Ω represents the respective boundaries of our computational domain and
f, g are known functions.

In addition to the equations (1)-(3) describing the flow dynamics, we model the
deployed drifters as passive Lagrangian tracers. Let Di denote the ith drifter which
moves with the local fluid velocity, obeying the following equations:

dxDi
(t)

dt
= u(xDi

(t), yDi
(t), t), (10)

dyDi
(t)

dt
= v(xDi

(t), yDi
(t), t), (11)

with the initial conditions

xDi
(0) = xDi,0, yDi

(0) = yDi,0. (12)

where xDi
and yDi

are the x and y-coordinates of the ith drifter, respectively. In
the sequel we denote the concatenated vector of drifter coordinates (xD, yD) by θD.
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3. Quadratic programming based inverse modeling algorithm.

3.1. Notations. We start this section by defining the variables which will appear
in the following sections. We employ the traditional notations of variational data
assimilation, set forth in [17]. Note that the variables used below are in discrete
space, discrete time. The corresponding schemes used to discretize equations (1)-(3)
will be outlined later.

Xn: Vector of state variables, namely the velocity components (u, v) and the
water height h for each mesh point at a time instant tn.

X0: Initial state of the system, with respect to which the minimization is done.
Xb: Background term of the same size as X0, which is introduced to ensure that

the problem is well-posed and has a unique minimum.
Yn: Vector of observed variables, namely the velocity components (u, v) and

(potentially) the water height h for some mesh points at a time instant tn.
B: Covariance matrix of the background error. The background error is defined

as the difference between the value of the state variables and background
variables at each mesh point.

Rn: Covariance matrix of the observation error. The observation error is the
difference between the value of the state variables and observed variables at
each mesh point.

Hn: Hn = ho
n◦hI is the observation operator; the operator ho

n projects the space
into the observation subspace. The operator hI is the interpolation function.
In general Hn is nonlinear although we manage to use a linear operator in our
case by using the a posteriori knowledge of the position of the measurements,
therefore encoded as a time varying observation matrix.

Variational data assimilation consists in obtaining the initial state that minimizes
a cost function representing the L2 norm of the difference between the state and
observed variables:

J o(X0) =

Nmax
∑

n=0

(Y o
n − Hn[Xn])TR−1

n (Y o
n − Hn[Xn]) (13)

where the subscript n denotes the time step. The number of points in the compu-
tational domain is usually significantly higher than the number of measurements
located along drifter trajectories, most of the times by a factor 102 or more. This
can make the minimization problem ill-posed; in particular, non uniqueness of the
solution may result from the ill-posedness. Thus, a term representing the L2 norm
of the difference between an estimate of the initial state Xb and the initial state
(unknown), called background term J b is introduced leading to a unique minimum
of the cost function and providing a first guess which accelerates the convergence
of the minimization algorithm. Such an estimate of the initial state of the system
may be available, for example, through historical data, simulation from a previous
assimilated initial state, forecast, or interpolation from a limited number of fixed
Eulerian sensors located at the boundaries of the system. This leads to a new cost
function, by adding the background term J b to the observation term J o:

J (X0) = (X0−Xb)T B−1(X0−Xb)+

Nmax
∑

n=0

(Y o
n −Hn[Xn])TR−1

n (Y o
n −Hn[Xn]) (14)
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B and Rn are covariance matrices of the background error and observation error
respectively and will be taken equal to diagonal matrices in a simplifying assump-
tion. Note that J o(X0) depends on X0 implicitly through the state Xn, obtained
from X0 by the flow equations, as will be detailed in the next section.

3.2. Linearization of the constraints. We will formulate the variational data
assimilation problem detailed above as a QP. The first step is to obtain linear
constraints, which in our case will be achieved by linearizing the shallow water
equations. Indeed, for numerous environmental flows, such as the ones we will
consider in our experiments, the Froude number is smaller than 1, usually by several
orders of magnitude, (Fr 6 0.05 in our case), and the nonlinear effects can be
neglected. We can rewrite the equations (1)-(3) under the form:

ut + uux + vuy + ghx = −gbx + Fx (15)

vt + uvx + vvy + ghy = −gby + Fy (16)

ht + (hu)x + (hv)y = 0 (17)

having neglected turbulence effects and replacing η by h − b where b(x, y) is the
bathymetric depth.

We linearize these equations around a flow (U0(x, y, t), V0(x, y, t), H0(x, y, t)),
satisfying (15)-(17) (see [32]) and we replace the friction terms Fx and Fy from
Equation (15) and Equation (16) by an empirical drag coefficient:

Cx,y =
1

cosα

gm2

H0(x, y, t)4/3

√

U0(x, y, t)2 + V0(x, y, t)2.

In general, U0(x, y, t), V0(x, y, t) and H0(x, y, t) are not uniform, because of the
geometry of the river. Based on the flow conditions, U0, V0 and H0 can be considered
to be static or not. The linearized equations become:

ut + U0(x, y, t)ux + V0(x, y, t)uy + ghx = −gbx − Cx,yu

vt + U0(x, y, t)vx + V0(x, y, t)vy + ghy = −gby − Cx,yv

ht + U0(x, y, t)hx + V0(x, y, t)hy + H0(x, y, t)(ux + vy) = 0

To discretize these equations, we will use an implicit four point scheme. The time
discretization is chosen to be implicit since an explicit time discretization would
require selecting time steps small enough to satisfy the Courant-Friedrichs-Lewy

condition, which would in turn increase unnecessarily the number of variables and
the size of our QP. A number of implicit schemes for the shallow water equations
have been developed recently [1, 2, 3, 7, 8, 31].

If we call ax
i,j and a

y
i,j the dimensions of the rectangular cell (i, j) along the x

and y axes, the spatial derivative of a given variable u can be approximated by the
following finite difference scheme:

∂u

∂x
=

un+1
i+1,j − un+1

i−1,j + un
i+1,j − un

i−1,j

4ax
i,j

where i, j denote the spatial indices and n the time step.
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The implicit Euler scheme is used for the time discretization:
∂ui,j

∂t is approxi-

mated by
un+1

i,j
−un

i,j

∆t . The previous discretization steps lead to the following numer-
ical scheme:

un+1
i+1,j+1 − un

i+1,j+1

∆t
+

U0(i, j, n)

4ax
i,j

(un+1
i+1,j − un+1

i−1,j + un
i+1,j − un

i−1,j)

+
V0(i, j, n)

4a
y
i,j

(un+1
i,j+1 − un+1

i,j−1 + un
i,j+1 − un

i,j−1)

+
g

4ax
i,j

(hn+1
i+1,j − hn+1

i−1,j + hn
i+1,j − hn

i−1,j + 2(bi+1,j − bi−1,j)) + Ci,ju
n
i,j = 0

vn+1
i+1,j+1 − vn

i+1,j+1

∆t
+

U0(i, j, n)

4ax
i,j

(vn+1
i+1,j − vn+1

i−1,j + vn
i+1,j − vn

i−1,j)

+
V0(i, j, n)

4a
y
i,j

(vn+1
i,j+1 − vn+1

i,j−1 + vn
i,j+1 − vn

i,j−1)

+
g

4a
y
i,j

(hn+1
i,j+1 − hn+1

i,j−1 + hn
i,j+1 − hn

i,j−1 + 2(bi,j+1 − bi,j−1)) + Ci,jv
n
i,j = 0

hn+1
i+1,j+1 − hn

i+1,j+1

∆t
+

U0(i, j, n)

4ax
i,j

(hn+1
i+1,j − hn+1

i−1,j + hn
i+1,j − hn

i−1,j)

+
V0(i, j, n)

4a
y
i,j

(hn+1
i,j+1 − hn+1

i,j−1 + hn
i,j+1 − hn

i,j−1)

+
H0(i, j, n)

4ax
i,j

(un+1
i+1,j − un+1

i−1,j + un
i+1,j − un

i−1,j)

+
H0(i, j, n)

4a
y
i,j

(vn+1
i,j+1 − vn+1

i,j−1 + vn
i,j+1 − vn

i,j−1) = 0

Boundary conditions are specified upstream as:

un
1,j = uj

up(tn), vn
1,j = vj

up(tn)

and downstream as:

hn
I,j = h

j
d(tn)

3.3. Incorporation of Lagrangian measurements. One issue that comes up
when attempting to employ QP techniques to solve this problem is that the in-
terpolation operator Hn is usually nonlinear. However, as mentioned before, in
the present case we are able to use a linear operator. Indeed, for the example we
will treat in this article, we assume that the Lagrangian sensors (drifters) have a
sufficiently small time sampling period compared to the Lagrangian timescale of
the body of water considered (which is realistic for the scenarios presented later);
therefore, the Eulerian velocity can be approximated by the Lagrangian velocity
obtained by finite differences [19, 23]:

uDi
(τn) =

xDi
(τn) − xDi

(τn−1)

∆τ
(18)

vDi
(τn) =

yDi
(τn) − yDi

(τn−1)

∆τ
(19)
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where xDi
(τn) and yDi

(τn) are the positions of drifter Di at time τn and uDi
(τn),

vDi
(τn) represent the components of the velocity of the drifter at time τn at location

(xDi
(τn), yDi

(τn)). ∆τ is the sensors time sampling period.
The observed variables are equal to the state variables and ho

n = I and Hn = hI .
For the interpolation operator, which maps measurement points to grid points, a
bilinear interpolation can be used. If a finite volume scheme is used as in this article,
the state variables are constant for each cell and therefore the observed variables
can simply be matched to the state variables by looking in which cell the drifter is
at a given time instant. Thus the bilinear interpolation operator is the identity in
our case. We also assume the error covariance matrices B = I and Rn = Rn = 1

r I

where r is an empirically determined scalar. The factor r is a weighting parameter
to adjust the respective influences of the background and observation terms. For
higher values of r, the analyzed state will be closer to the background term than
the observations, whereas for lower values the regularizing effect of the background
term is reduced, which in effect slows down the convergence of the algorithm. A
careful choice of the parameter r is therefore essential to a good performance of the
data assimilation algorithm.

3.4. Optimization program formulation. We can now pose the data assimila-
tion problem as a quadratic optimization problem. B can be chosen so that the cost
function (14) is quadratic positive definite. The discretized dynamics of the flow
can be encoded in the form of linear constraints, which is one of the benefits of the
quadratic method used. The numerical scheme is implicit, i.e. has to be written in
the form EXn+1 = FXn + Gzn where E is not necessarily invertible. F encodes a
portion of the dynamics for the spatial derivatives, Gzn encodes the inputs. In this
equation, Xn encodes the vector of concatenated (un

i,j , v
n
i,j , h

n
i,j) at a given n. The

QP can incorporate these equations in the form of constraints at no further cost or
complication. We concatenate the vectors (un

i,j , v
n
i,j , h

n
i,j) for all (i, j, n) into a single

vector called X , and abbreviate the concatenated dynamics constraints by AX = B,
where this equation encodes the discretized flow equations. The search space for
X0, which is a portion of the concatenated vector X from which all other quantities
depend is allowed to evolve in a set of feasible initial conditions dictated by the
two-dimensional shallow water equations. Because the (un

i,j , v
n
i,j , h

n
i,j) cannot take

arbitrary values, the space in which X evolves can also be restricted to increase the
speed of convergence of the method. These two constraints are encoded in the form
of an inequality, GX 6 H. The general form of the quadratic function is written
using the variables P ,Q,R. Finally, using the previous variable definitions, and
because of the background term, the minimization of equation (14) subject to the
constraints listed previously can be written as a QP in the following form:

minimize J(X0) = 1
2X

TPX + QTX + R
subject to GX 6 H

AX = B

Note that the variables used in this definition (A,B,G,H,P ,Q,R) are not related to
the variables used in the rest of the article designated by the same letters with other
fonts. If boundary conditions measurements are available, they can be specified in
the QP; if no boundary data is given, the background term boundary value will
then be used in the algorithm. The twin experiments presented later in this article
do not show a significant difference in relative error between the two cases.
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4. Ensemble Kalman filtering with state augmentation. The EnKF is an
alternative data assimilation method to the traditional Extended Kalman Filter

(EKF). With nonlinear dynamics, the linearization required in EKF (for example,
implicit time stepping) can be computationally too demanding. EnKF is a sequen-
tial data assimilation method which uses Monte Carlo or ensemble integrations. By
integrating an ensemble of model states forward in time, it is possible to compute
the mean and error covariances needed at analysis times (the time instants when
measurements are used to update model output) [15, 9]. The analysis scheme in
EnKF uses traditional update equations of the Kalman Filter (KF), except that the
Kalman gain is computed using the error covariances provided by the ensemble of
model states.

4.1. Notations. The notations for the EnKF algorithm presented in the rest of
section 4 are as follows:

θn: Vector of state variables, namely the velocity components (u, v), the water
height h for each mesh point and the positions of the drifters xD, yD at a time
instant tn.

Fn: Time dependent discretized forward 2D shallow water equation model.
wn: State noise representing the error between the forward model and reality.
Qn: Covariance of the state noise wn.
yn: Vector of observed variables, namely the positions of the drifters (xD, yD)

at a time instant tn.
ǫn: Measurement noise, representing the error in the GPS measurements of the

drifter positions.
Γǫn

: Covariance matrix of the measurement noise ǫn.
Cn: Observation matrix.
ξp
n: pth ensemble member at time tn.

Kn: Kalman gain at time tn.

4.2. State-space equations. We employ a state-augmentation approach that has
been introduced earlier in oceanography (see [28, 21, 18] for more details). We sym-
bolically denote by θF the state variables corresponding to (u, v, h) on the compu-
tational domain. θF is of size three times the number of nodes in the computational
domain, corresponding to (u, v, h) on each node in the domain. In this approach,
Lagrangian drifter positions are embedded in the state vector in discretized form
and the new state vector θn at time tn is written as

θn =

(

θF (tn)
θD(tn)

)

.

This approach makes it possible to take the Lagrangian nature of observations
into account in a way which does not require deriving Eulerian quantities from
Lagrangian measurements as was done in the previous section in equations (18)
and (19).

By inspection, we note that there is a one-way coupled system from flow variables
θF to drifter positions θD, that is, the drifter positions can be solved after the
flow variables have been solved. We express this system by Fn, where as in the
previous case n refers to the time step. Furthermore, due to the uncertainties in
the modeling, we add a stochastic term wn to represent these modeling errors. The
noise process wn, with covariance Qn, is a Gaussian noise process that is used to
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model inaccuracies in the evolution model (discretization error, poorly known inputs
etc., see for example [29]).

Thus, we can write a nonlinear discrete stochastic state space model in the fol-
lowing form:

θn+1 = Fn(θn) + wn. (20)

Here θn is the predicted system state at time step n and Fn(θn) is one time step in
the (non-linear) discretized shallow water and drifter model, which is time depen-
dent. Note that if the equations were linear, Xn used in the previous section would
be the portion of θn which does not contain any drifter position (labeled as θD).

For the observations, we use an additive noise model

yn = Cnθn + ǫn. (21)

The observation vector is yn and the observation model that relates the state vari-
ables to the measurements is Cn. The noise process ǫn is the measurement noise
with covariance Γǫn

. Without loss of generality, noise processes are assumed to
have zero mean. Furthermore, with these choices, the observation model Cn be-
comes simply Cn = (0 I) where 0 is a zero matrix of size three times the number of
nodes by two times the number of drifters for the three variables (u, v and h) and
I is the identity operator of size the number of drifters times two.

The numerical solution of the 2D shallow-water equations and drifter positions
in (20) is computed using the commercial hydrodynamic software TELEMAC 2D
[27]. TELEMAC uses a streamline upwind Petrov-Galerkin based finite element
solver for hydrodynamic equations. Therefore, in practice, the Fn step of equation
(20) is performed numerically by the software.

4.3. Ensemble Kalman filter (EnKF). In the filtering problem, the aim is to
compute conditional expectations

θn|n = E(θn|yn, . . . , y1).

In the case of linear observation and evolution equations and for Gaussian noise
processes, the recursive Kalman filter algorithm can be used for determining the
estimates of conditional expectation θn|n and covariance Γn|n. If the evolution
and/or observation equations are nonlinear and differentiable, the extended Kalman
filter can be applied [4]. However, to avoid the cumbersome linearization of a
nonlinear finite difference scheme and to preserve the higher order statistics, which
may be lost in the linearization, we employ the EnKF.

For the state space model (20)–(21), the EnKF algorithm can be summarized as
in [15, 12]:

Algorithm

1. Initialization: An ensemble of Nstates states ξ
(p)
0 indexed by p are generated

to represent the uncertainty in θ0.
2. Time update:

ξ
(p)
n|n−1 = Fn−1(ξ

(p)
n−1|n−1) + w

(p)
n−1 (22)

θn|n−1 =
1

Nstates

Nstates
∑

p=1

ξ
(p)
n|n−1 (23)

En|n−1 = [ξ
(1)
n|n−1 − θn|n−1, . . . , ξ

(Nstates)
n|n−1 − θn|n−1] (24)
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3. Measurement update:

Γn|n−1 =
1

Nstates − 1
En|n−1E

T
n|n−1 (25)

Kn = Γn|n−1C
T
n (CnΓn|n−1C

T
n + Γǫn

)−1 (26)

ξ
(p)
n|n = ξ

(p)
n|n−1 + Kn(yn − Cnξ

(p)
n|n−1 + ǫ(p)

n ) (27)

where the ensemble of state vectors are generated with the realizations w
(p)
n and

ǫ
(p)
n of the noise processes wn and ǫn, respectively. In the previous equations, an

important step is that at measurement times, each measurement is represented by an
ensemble. This ensemble has the actual measurement yn as mean and the variance
of the ensemble is used to represent measurement errors. This is done by adding

perturbations ǫ
(p)
n to measurements drawn from a distribution with zero mean and

covariance equal to measurement error covariance matrix Γǫn
. This ensures that the

updated ensemble has a variance that is not too low [9]. The graphical illustration
of the EnKF algorithm is presented in Fig. 1.

Figure 1. Graphical illustration of the EnKF algorithm.

4.4. EnKF implementation. The initial ensemble for the EnKF is generated
from historical knowledge on the boundary conditions in the river. We generate an
ensemble of size Nstates = 100 as follows. The idea is to produce Nstates different
initial velocity fields representing the different states of the river. In order to do this,
we use data from the DSM2 model, which are available for a period of eight years.
From these data, we extract statistical characteristics of the boundary conditions:
a mean value of discharge upstream, a mean value of surface elevation downstream
and a covariance matrix of those two quantities. From this, we generate a set of
discharges and free surface elevations (q(p),η(p)), p = 1, . . . , Nstates that correspond
to the statistical characteristics deduced from the historical data. For each discharge
q(p), we deduce a velocity profile

(u(p), v(p))
∣

∣

∂Ωupstream
,

that is normal to the upstream boundary and proportional to the square root of
the water depth at the upstream boundary. The downstream boundary condition
is the surface elevation obtained directly from the historical data statistics:

η(p)
∣

∣

∂Ωdownstream
= η(p).
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In order to obtain realistic initial states for the EnKF algorithm, a 150 minute
stabilization run is performed as follows. The forward solver TELEMAC 2D is
started from zero velocity and it runs for 150 minutes for each ensemble member
using the set (u(p), v(p))

∣

∣

∂Ωupstream
, η(p)

∣

∣

∂Ωdownstream
as boundary conditions. By doing

this, numerically stable and physically meaningful initial states for flow variables

(u
(p)
0 , v

(p)
0 , h

(p)
0 ) are obtained. Furthermore, the zero velocity initial condition that

we use to initialize TELEMAC 2D is not affecting the flow variables when the state
estimation starts.

When stable states are reached, state estimation can start. In the state estima-
tion procedure we do not update the velocity at the nodes that correspond to the
land boundary. This is to make sure that we do not violate the no-slip condition.
The initial boundary conditions for each ensemble member at time step zero are
(u(p), v(p))

∣

∣

∂Ωupstream
, η(p)

∣

∣

∂Ωdownstream
; these are obtained from the last time step of

the stabilizing run.
We set the standard deviation of the measurement noise ǫn to be 0.5 m in both

x and y directions. This indicates our confidence on the measurement data, and
can be seen as a realistic choice for the accuracy of GPS receivers.

The state noise models the discrepancy between the model and reality. In this
work it is assumed that the state noise for the flow variables can be deduced from
the properties of large number of ensemble members. The covariance matrix Qn for
the flow variables is computed as the covariance of the initial ensemble members
around the mean flow. Thus, the state noise reflects the variations in the velocity
and depth field due to the uncertain and changing boundary conditions.

We further assume that the mesh nodes corresponding to the land nodes are not
affected by the state noise in order not to violate the no-slip condition on the land
boundaries. In addition, we assume that there is a small uncertainty in the model
which predicts the drifter positions. This uncertainty is modeled by a white noise,
that is the covariance matrix for the drifters is a diagonal matrix. This uncertainty
is indicated by setting the standard deviation of the state noise in the covariance
matrix Qn corresponding to all drifter coordinates to be 0.5 m in both x and y

directions.

5. Results.

5.1. Twin experiments settings. We compare the two methods using twin ex-
periments. The true state of the river and the position of the drifters are generated
using the software TELEMAC. We perform several experiments in order to test the
influence of the number of drifters and their initial position in the river.

The domain is the Sacramento River, upstream of the intersection with the Geor-
giana Slough, in the Sacramento delta. The bathymetry is provided by the United

States Geological Survey (USGS) as shown in Fig. 2. The 930 m long section of the
Sacramento River is 85 m wide in its narrowest part and 190 m wide in its largest
part. The flow in this part of the Sacramento River is driven by tidal forcing. A
typical velocity field is represented in Fig. 3 for a case of low flow.

The software TELEMAC is used to perform a non linear forward simulation from
which the drifter position measurements and the so called true state of the river are
obtained. The true state and the drifter measurements are computed in a denser
mesh (2972 nodes, 5484 triangular elements) compared to the mesh used in the
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Figure 2. Bathymetry in the Sacramento River (m). The bathymetry on this
930m section of the Sacramento River goes from -14m in the deepest part to +2m
on the river banks.

solution of the inverse problem for EnKF (1550 nodes, 2788 triangular elements)
and the curvilinear mesh used in the QP (37×6 cells).

The boundary conditions for models are computed using the Delta Simulation

Model II (DSM2) [5]. It is a model of the San Francisco Bay and Sacramento
Delta that provides discharge and surface elevation at various locations every hour.
The bottom friction is modeled using Manning’s law. The Manning coefficient is
chosen to be constant in time and space and equal to 0.02, corresponding to a
straight gravel bottom [11]. The simulation runs for two and a half hours before
the drifters’ release so that a stable state is reached.

Three different cases are considered. First we model a situation with constant
boundary conditions. The second and third test cases are situations with varying
boundary conditions extracted from DSM2 results, corresponding to a high and a
low flow situations. DSM2 values are available at a one hour sampling rate and
interpolated linearly. The first time period, later denoted as Period 1, corresponds
a high flow situation on March 17th 2006 from 4PM to 5PM. The second time
period, later denoted as Period 2, corresponds to a low flow situation on June 29th
2006 from 1AM to 2AM. Fig. 3 represents the velocity field at the end of this
period. During the one hour period, twenty-four drifters are released. The first
eight drifters are released at t0 along a line upstream. Then, at t0 + 20 minutes,
we release eight more drifters upstream, followed by eight more at t0 + 40 minutes.
Drifter positions are then recorded every 30 seconds until t0 + 60 minutes. Fig. 4
shows snapshots of drifter positions for the low flow case.
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Figure 3. Velocity field in the Sacramento River (m/s) for low flow boundary
conditions. The background color represents the magnitude of the velocity.

Different tests can be run using these simulations. First, we investigate the
influence of the number of drifters, by using four, eight, twelve or twenty-four out
of the total twenty-four released drifters in the assimilation algorithm. Besides, we
test the influence of the deployment strategy in releasing drifters on one line at the
initial time or on several rows at different time steps. Then, we study the influence
of the frequency of the measurements by using only one measurement every minute
instead of every 30 seconds.

The comparison between the two methods is made a posteriori: the QP runs
on a period of one hour and recovers the state of the system at the beginning of
this period, when the drifters were released. Additionally, the QP based algorithm
generates the state of the system at every time step over the period of assimilation,
as part of the state X reconstructed. The QP is solved using a large scale QP
software (in our case CPLEX) with the algorithm itself being coded through the
AMPL modeling language. For a one hour period, about 20 iterations of a barrier
method are necessary for the solver to converge to a solution which takes about
five seconds on a desktop computer. A background term, necessary for the QP
algorithm, is generated from the available information (in our case, the upstream
boundary conditions). The EnKF generates an estimate of the state vector at each
time step in real time. The duration of a one-hour run is between six to eight hours
on a standard desktop computer. The evolution of the relative root mean square

(RMS) error is computed for both the algorithms (QP based and EnKF) and the
respective errors are compared for each twin experiment.

5.2. Results and comparison. A total of 25 cases are considered, using the three
different boundary condition settings as described previously, either four, eight,
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(d) Time step 120

Figure 4. Eight drifters are released at time step 0 (+), eight drifters at time
step 40 (▽), eight drifters at time step 80 (△). Drifter positions are sampled with
30-second-time-interval until time step 120.

twelve or twenty-four of drifters released on different configurations and using a 30
second sampling or a 60 second sampling for the measurements.

The boundary conditions that are used here correspond to various configura-
tions of the river. We use constant boundary conditions picked from DSM2 values.
Discharge upstream is Qup = 235.3 m3/s and the surface elevation downstream is
ηdown = 1.49 m. This corresponds to normal conditions in the river. The Sacra-
mento River is tidally forced, thus constant boundary conditions do not occur in
the system. The constant boundary condition case is a benchmark for the other
cases.

For the low flow varying boundary conditions, we use Period 2. The discharge
upstream varies from 300.2 m3/s at 1AM to 223.1 m3/s at 2AM. The surface ele-
vation downstream varies from 1.52 m at 1AM to 1.58 m at 2AM. The discharge
here is smaller as the snow melt period is over. As it is at the beginning of the dry
season, the river still flows towards the ocean. The variation of the discharge is still
due to tidal forcing.

For the high flow varying boundary conditions, we use Period 1. The discharge
upstream varies from 722.3 m3/s at 4PM to 686.1 m3/s at 5PM. The surface ele-
vation downstream varies from 2.91 m at 4PM to 2.95 m at 5PM. This high flow
conditions are typical of snow melt season in the Sacramento Delta. The flow varies
because of tidal forcing and the discharge is high because of snow melt runoff.

For each of the scenarios described previously, we use either four, eight, twelve
or twenty-four of the released drifters. For the four drifter case, four of the eight
drifters released at t0 are used for the QP. For the EnKF, two of the drifters released
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at t0 and two of the drifters released at t0 + 20 minutes are used. For the eight
drifter case, the QP uses the eight drifters released at t0, while the EnKF uses either
the same eight drifters or four of the eight drifters released at t0 and four of the
eight drifters released at t0 + 20 minutes. For the twelve drifter case, the EnKF
uses four of the eight drifters released at t0, t0 + 20 minutes and t0 + 40 minutes.
For the twenty-four drifter case, both QP and EnKF use all of the eight drifters
released at t0, t0 + 20 minutes and t0 + 40 minutes. For each of these cases, we
use either a 30 second time step or a one-minute time step.

For each case, the relative RMS error is computed for the velocity:

ε(t) =

√

√

√

√

∑NNode
i=1 ‖

−→
U True(xi, t) −

−→
U (xi, t)‖2

∑NNode
i=1 ‖

−→
U True(xi, t)‖2

(28)

where xi represents a generic point on the mesh generated to solve these problems
numerically and NNode represents the number of nodes on this mesh.

The results for all the cases and for the two algorithms are summarized in table 1.

5.3. Result overview. Table 1 shows that the evolution of the error in time is
different for both methods. The error is relatively stable for the case of the QP
while it significantly varies for the EnKF as can be seen in Fig. 5 as well. The
reason for the highly variable error in the EnKF is that the right model to use
for the state noise is still an open problem. Future work on its refinement should
provide more accurate estimates.

Fig. 5 shows the evolution in time of the error for the EnKF method compared
to a reference case (forward simulation with no update of the state using the drifter
measurements). The assimilation of the drifter positions allows the algorithm to
catch the variation of the flow and thus correct the velocity field.
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Figure 5. Time evolution of the relative error of the velocity for EnKF estimate
(+) and the reference case (◦), in the case of low flow boundary conditions using
24 drifters with a time sampling of 30 seconds. The EnKF estimate captures the
variations in the velocity field and thus, has a smaller error.
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Time t0 t0+30min t0+60min Mean
Nd M.S. QP EnKF QP EnKF QP EnKF QP EnKF
Constant Flow

4
30s 19.8% 7.4% 20.0% 20.1% 20.0% 15.7% 20.0% 18.0%
60s 19.8% 16.4% 20.0% 28.0% 20.0% 13.4% 20.0% 20.0%

8
30s 8.0% 7.0% 9.6% 9.0% 9.6% 9.8% 9.4% 8.7%
60s 8.0% 18.1% 9.6% 15.3% 9.6% 14.7% 9.4% 12.1%

12
30s N.A. 7.9% N.A. 7.6% N.A. 9.7% N.A. 8.3%
60s N.A. 18.1% N.A. 11.2% N.A. 14.4% N.A. 12.8%

24
30s N.A. 7.1% N.A. 8.1% N.A. 9.2% N.A. 8.5%
60s N.A. 16.1% N.A. 15.7% N.A. 15.1% N.A. 13.2%

Low Flow

4
30s 19.8% 6.6% 20.6% 13.4% 20.8% 20.5% 20.5% 15.3%
60s 20.1% N.A. 20.2% N.A. 20.2% N.A. 20.2% N.A.

8
30s 4.8% 7.2% 4.9% 8.2% 5.8% 10.9% 5.1% 9.2%
60s 5.0% 8.6% 5.1% 11.3% 5.8% 12.2% 5.2% 12.1%

8(1) 30s 4.8% 7.6% 4.9% 8.1% 5.8% 15.0% 5.1% 9.2%

12
30s N.A. 7.1% N.A. 9.7% N.A. 11.5% N.A. 10.1%
60s N.A. 8.2% N.A. 9.3% N.A. 14.5% N.A. 10.5%

24
30s 5.2% 7.3% 5.1% 7.3% 5.0% 9.2% 5.1% 8.2%
60s N.A. 7.5% N.A. 7.5% N.A. 10.6% N.A 9.3%

High Flow

4
30s 20.6% 7.9% 20.4% 12.8% 20.5% 10.5% 20.5% 11.2%
60s 25.9% 8.1% 25.7% 12.9% 25.9% 12.2% 25.8% 11.6%

8
30s 7.5% 8.1% 6.8% 8.4% 7.0% 12.2% 7.0% 9.1%
60s 19.8% 11.1% 19.5% 8.5% 19.7% 14.6% 19.6% 9.6%

12
30s N.A. 8.4% N.A. 8.9% N.A. 9.1% N.A. 8.5%
60s N.A. 10.9% N.A. 8.8% N.A. 8.4% N.A. 8.5%

24
30s N.A. 8.6% N.A. 10.4% N.A. 7.9% N.A. 8.2%
60s N.A. 11.3% N.A. 9.3% N.A. 7.0% N.A. 8.4%

Table 1. Relative RMS error as computed in equation (28) for the different test
cases. Nd is the number of drifters. M.S. is the measurement sampling time. For
each case, the errors are reported for the initial time (t0), after half of the total
assimilation time (t0 + 30 minutes) and at the end of the experiment (t0 + 60
minutes). The mean error over the time period is also reported. For four and eight
drifters, QP uses one row of drifters released at time step t0 and the EnKF uses
two rows of drifters released at t0 and t0 + 20 minutes. For twelve and twenty-
four drifters, three rows of drifters are used for both algorithms. The case labeled
(1) corresponds to a release of one row of drifters only for EnKF. N.A. means the
simulation was not realized for that particular case.

Fig. 6 shows the relative error of the QP estimate and EnKF estimate at time
step 0 for the case with low flow varying boundary conditions using eight drifters
and a time sampling of 30 seconds.

The error is located on the land boundary, where relative error can be up to 90%
on the boundary. The absolute error in that case is actually around 0.1m/s. The
error is high along the land boundary because the EnKF corrects the velocity field in
an area around where drifters are. There are no drifters close to the boundary and
thus the error is higher. The same phenomenon can be seen for the QP estimate:
the error is highest around the land boundaries because of the absence of drifters
in those areas.

5.4. Influence of the number of drifters. Looking at Table 1 and Fig. 7, the
difference in the error when using eight, twelve or twenty-four drifters is quite small
for the EnKF. For the three different boundary conditions cases and the two different
time sampling, when going from twenty-four to eight drifters, the error increases
of 0.2% for the constant boundary condition case with 30 second measurement
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Figure 6. Relative error in the velocity field with varying boundary conditions,
low discharge with eight drifters in a row for QP (top) and eight drifters in two
rows of four for EnKF (bottom) and a time sampling of 30 seconds.

sampling (8.5% to 8.7%) to 2.8% for the low flow case with 60 second measurement
sampling (9.3% to 12.1%). There is a higher difference when using four drifters:
when the number of drifters goes from eight to four, the error increases of 2.1% for
the high flow case with 30 second measurement sampling (9.1% to 11.2%) to 9.3%
for the constant boundary condition case with 30 second measurement sampling
(8.7% to 18%). The number of drifters have less influence in the cases of low and
high flow varying boundary conditions while it has a remarkable influence in the
case of constant boundary conditions. This is related to the fact that the EnKF
method uses flow measurements to correct the prediction of the forward model.

The QP shows a significant improvement when the number of drifters increases.
Dropping the number of drifters from eight to four, the RMS error in the velocity
increases of 6.2% for the case of high flow with 60 second measurement sampling
(19.6% to 25.8%) to 15.4% for the low flow with 30 second measurement sampling
(5.1% to 20.5%). Increasing the number of drifters to twenty-four does not decrease
further the error because of the deployment strategy in three rows that is used.
The QP method is performing a minimization based on the initial state, thus only
adding drifters on the initial row will improve the method performance.

5.5. Influence of the deployment strategy. It is to be noted that using several
rows of drifters during the experiment for the QP does not yield any improvement to
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Figure 7. Mean RMS error for the different cases (different boundary conditions
and time sampling) for four, eight, twelve and twenty four drifters. The error bar
represents the variation of the error among the cases.

the relative RMS error. This can be seen in the result of the simulation using twenty-
four drifters that gives results close to the result of the eight drifter simulation.
Given that the QP based algorithm performs the minimization with respect to the
initial state, this result is not too surprising.

In order to assess the influence of deployment strategy for EnKF, we realized a
twin experiment using one row of eight drifters for the EnKF instead of two succes-
sive rows of four drifters. The chosen case was with low flow boundary conditions
and a measurement sampling of 30 seconds. The mean value of the error is 9.2%
which is the same as for the case with two releases of four drifters. The error is
comparable during the first third of the experiment and it then increases when the
drifters start exiting the domain and no new drifters are released. The noise in
the EnKF results that is due to the modeling of the state noise, as stated before,
explains the fact that the mean value in time for the two strategies is the same. At
the end of the time period, the error is higher by 4.1% when only one row of drifters
is used. The estimate after all the drifters exited the domain is thus useless. As
the EnKF is doing an online inversion, the method shows better performances for
constant releases of drifters rather than one release of drifters.

The two methods, QP and EnKF, show very different performances regarding
the deployment strategy. Because they operate differently, each algorithm has a
specific optimal drifter release strategy. The EnKF is a sequential data assimilation
method which improves the model prediction as new observations are gathered
whereas the QP based algorithm is a variational data assimilation method which
uses all the observations available at the end of the period considered and minimizes
a cost function containing both modeled and observed variables. Thus given a total
number of available drifters, the optimal release strategy for the EnKF consists in
splitting the drifters into a number of rows that are released at regular intervals
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during the experiment while for the QP based algorithm, all the drifters should be
released at the beginning of the observation period.
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Figure 8. Mean RMS error for the different cases (different boundary conditions
and number of drifters) for 30 second and 60 second measurement sampling. The
error bar represents the variation of the error among the cases.

5.6. Influence of time sampling. Fig. 8 shows that time sampling has a greater
influence on the QP estimate than on the EnKF estimate. This can be explained
by several factors as described below.

The difference in time sampling is not relevant for the EnKF for the cases with
varying boundary conditions. When the time sampling increases from 30 to 60 sec-
onds, the relative RMS error remains constant for the high flow case with twelve
drifters (8.5%) or increases of up to 2.9% for the low flow case with eight drifters
(9.2% to 12.1%). The relative RMS error however increases by 2.0% for four drifters
(18.0% to 20.0%) to 4.7% for twenty-four drifters (8.5% to 13.2%) in the case of
constant boundary conditions. This can be explained by the fact that the time step
of the direct simulation is much smaller than the sampling time for the measure-
ments (by a factor of 30 to 60 respectively), therefore more frequent updates yield
more accurate results. For the QP, the measurement sampling has no influence on
the relative RMS error for the constant boundary conditions and varying boundary
conditions with low flow (constant error for constant boundary conditions with four
or eight drifters and increase of up to 0.3% for low flow with four drifters) while it
makes a significant difference in the case of high flow (5.3% increase in RMS error
with four drifters to 12.6% with eight drifters). The difference in the estimation
error is explained by the fact that at velocities encountered in this experiment (0.8
m/s) a drifter will have floated two or three grid cells of the QP grid in between
two measurements resulting in the absence of observations for about half of the
grid cells. The same phenomenon does not occur for the EnKF. This is explained
by the fact that the EnKF catches the variation of the velocity using the ensemble
statistics and the drifter measurements. The magnitude of the velocity does not
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affect the EnKF estimate. In the case of low flow, velocities are lower (0.4 m/s)
and drifters move at most from one cell to next one in between two measurements,
and provide observations for almost every cell on their trajectory. Thus the error
for the QP is not affected by the time sampling for low flows.

The QP is thus very sensitive to time sampling depending on the conditions in the
river and the grid used in the inversion. On the other side, EnKF shows reasonable
performances with fewer measurements independently of flow conditions.

6. Conclusion. In this article, two data assimilation methods were applied to a
river in the Sacramento Delta and their respective performances were compared.
The comparison was made using twin experiments, in which drifter trajectories
are simulated, implemented with experimentally measured bottom topography and
boundary conditions. The sensitivity of the different data assimilation techniques
to the number of drifters, low or high discharge and time sampling frequency was
analyzed and the respective computational costs of each method compared. The
main conclusions of this study are that the QP based algorithm introduced by the
authors presents a good balance of accuracy and low computational cost. The EnKF
algorithm which uses the nonlinear two-dimensional shallow equations is slightly
more accurate in some cases, but requires longer computational time (up to 8 hours
compared to the few seconds needed for the QP algorithm). Its benefit is to capture
nonlinear features in the flows, which the QP cannot. This might be investigated in
the future. The QP method returns higher relative RMS errors when the number
of drifters is reduced from eight to four or when the time sampling frequency is
changed from 30 to 60 seconds. The EnKF is less sensitive to time sampling and
number of drifters. A first attempt at estimating the optimal deployment strategy
was made, showing that the QP requires one row of drifters released at the beginning
of the assimilation period while the EnKF gives better estimate when several rows of
drifters are released over the assimilation period. Future research directions include
adding a salinity or sediment model to the shallow water equations and applying
the data assimilation algorithms in this new setting. Also, field experiments will be
conducted in the rivers of the Sacramento Delta and the experimental data collected
used for data assimilation purposes through the methods presented in this article.
Another issue is the optimal placement of the drifters and the optimal release points
in order to maximize the accuracy of the assimilated state.
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