
Stability analysis of linear hyperbolic systems

with switching parameters and boundary conditions

Saurabh Amin†, Falk M. Hante‡, Alexandre M. Bayen†

Abstract— We study asymptotic stability of an infinite di-
mensional system that switches between a finite set of modes.
Each mode is governed by a system of one-dimensional, linear,
hyperbolic partial differential equations on a bounded space
interval. The switching system is fairly general in that the space
dependent system matrix functions as well as the boundary
conditions may switch in time. For the case in which the
switching occurs between subsystems in canonical diagonal
form, we provide two sets of sufficient conditions for asymptotic
stability under arbitrary switching signals. These results are
direct generalizations of the corresponding results for the un-
switched case. Furthermore, we provide an explicit dwell-
time bound on the switching signals that guarantee asymptotic
stability of the switched system under the assumption that each
of the subsystems are stable. Our results of stability under ar-
bitrary switching generalize to the case where switching occurs
between non-diagonal hyperbolic systems that are diagonaliz-
able using a common transformation. For the case where no
such transformation exists, we prove existence of a dwell-time
bound on the switching signals such that asymptotic stability
is guaranteed. To motivate our study, we discuss a potential
application to stability of water flow in one-dimensional open
channels governed by linearized Saint-Venant equations.

I. INTRODUCTION

Flows in physical infrastructure networks such as trans-

portation systems [1], irrigation canal systems [2], [3], and

gas distribution systems [4] can be modeled by systems

of hyperbolic conservation laws in one spatial dimension.

These physical networked systems can be monitored and

controlled at nodes by supervisory control and data acqui-

sition (SCADA) systems [5]. A common control problem

studied in the context of these conservation laws is the

problem of stability and stabilization under boundary control

actions. Recent years have witnessed a significant amount of

research activity on this topic [6], [7], [8], [2], [3], [9], [10].

From a practical point-of-view, it is of interest to consider

situations in which during the period of operation, the

parameters of the system exhibit switching in time triggered

by external factors [11]. In addition, a controller based on

externally specified logical rules may switch between one

of the several possible control actions. The present article

focuses on stability properties of hyperbolic conservation

laws in bounded domains, where the system’s parameters

and the boundary conditions may (autonomously) switch in

time.
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This switched initial boundary value problem is posed as

a hybrid system problem on an infinite dimensional state

space. While hybrid systems in which modes are governed

by ordinary differential equations (ODEs) and differential

algebraic equations (DAEs) in R
n are extensively consid-

ered in the literature [11], [12], hybrid systems in which

modes are governed by partial differential equations (PDEs)

represent a relatively unexplored and potentially rich field

of study [13]. In general, systems modeled by PDEs may

exhibit hybrid behavior in a variety of ways: switching

sequentially in time or sequentially in space or distributed

in the space/space-time domain. Here, we focus on the case

in which switching occurs in time as the system we consider

allows an abstract ODE treatment using semigroup theory.

Our work is different from earlier results on stability of

infinite-dimensional switching systems [14], [15] in that our

analysis accounts for boundary conditions. We consider the

main driving problems:

(A) Find conditions that guarantee asymptotic stability of

the switched PDE for arbitrary switching signals.

(B) Alternatively, characterize a (preferably large) class

of switching signals such that the switched PDE is

asymptotically stable.

These problems are relevant when the switching mechanism

is either unknown or too complicated for a more careful

stability analysis, in particular when the switching happens

autonomously as for instance in networked transport sys-

tems [16]. For the PDE under consideration here, the switch-

ing may either affect the advective velocities or the boundary

conditions or both. We can thus expect that a potentially

de-stabilizing switching of the advective velocities can be

compensated by stabilizing boundary conditions and vice-

versa.

The article is organized as follows. In Section II we con-

sider switching the hyperbolic system in canonical diagonal

form and derive a joint spectral radius sufficient condition in

view of problem (A). In Section III, we switch non-diagonal

systems and show that the joint spectral radius condition

from the former section is no longer sufficient. However,

we obtain existence of a dwell-time such that the system

is asymptotically stable for slow enough switching in view

of problem (B). A potential application to the linearized

Saint Venant equation is discussed in Section IV. Some final

remarks are given in Section V.
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II. STABILITY OF SWITCHED HYPERBOLIC SYSTEM IN

DIAGONAL FORM

A. Switched hyperbolic system in diagonal form

We consider a switched system in which the dynamics in

each mode are governed by a system of linear hyperbolic

PDEs in diagonal form and the mode switches in time t ≥ 0
occurs according to a switching signal σ(·) with σ(t) ∈ Q ≃
{1, . . . , N}:















∂

∂t

(

ξI(t, s)
ξII(t, s)

)

+ Λσ(t)(s)
∂

∂s

(

ξI(t, s)
ξII(t, s)

)

= 0

ξII(t, a) = G
σ(t)
L ξI(t, a), ξI(t, b) = G

σ(t)
R ξII(t, b)

ξ(0, s) = ξ̄(s)

(1)

for the unknown function ξ(t, s) = (ξ1(t, s), . . . , ξn(t, s))⊤

partitioned as (ξ⊤I (t, s), ξ⊤II(t, s))
⊤ with ξI ∈ R

m, ξII ∈
R

n−m on the space-time strip T × [a, b], T = {t ≥ 0},

where for all modes j ∈ Q

(H1) Λj(s) = diag(Λj
I(s),Λ

j
II(s)) ∈ R

n×n with

Λj
I(s) = diag(λj

1(s), . . . , λ
j
mj

(s)) < 0, Λj
II(s) =

diag(λj
mj+1(s), . . . , λ

j
n(s)) > 0 and λj

i (·) ∈ C1([a, b])
for i = 1, . . . , n and 1 < mj < n specify the advective

velocities;

(H2) Gj
L ∈ R

(n−mj)×mj and Gj
R ∈ R

mj×(n−mj) specify

the boundary data;

and where

(H3) σ(·): T −→ Q is a piecewise constant switching

signal with switching times τk ∈ T (k ∈ N) at

which σ(·) discontinuously switches from one mode

j ∈ Q to another mode j′ ∈ Q, denoted as j y j′

(piecewise constant meaning that there are only finitely

many switches j y j′ in each finite time interval of

T ).

Subsequently, we make use of the following hypothesis

(H4) Let dim(Λj
I) = dim(Λj′

I ), i. e. mj = mj′ , for all

j, j′ ∈ Q.

In each mode j ∈ Q, along the C1-curve defined by the

equation

ds

dt
= λj

i (s) (2)

the component ξi of the solution (ξI , ξII) remains con-

stant; see Figure 1 (a). The above equations have for given

initial conditions a unique solution because (H1) implies

a Lipschitz-bound of λj
i on [a, b]. For the switched sys-

tem, these characteristic curves become characteristic paths,

given by solutions of the switched ODE (2) with j = σ(t).
The form of boundary conditions in system (1) arises in many

applications and is called reflecting boundary conditions; see

Figure 1 (b).

We consider the dynamics of (1) in the Hilbert space H =
(L2[a, b])n with norm ‖ · ‖2 and define for a fixed j ∈ Q the

j = 1, . . . , m k = 1, . . . , n − m

λn

λm+1
λm

λ1

s = 0 s = 1
t = 0

t

ξm

ξ1

ξn

ξm+1

ξm

ξ1

ξn

ξm+1

s = 0 s = 1
t = 0

t

Fig. 1. (a) Characteristic lines. (b) Reflecting boundary conditions.

following unbounded operator Aj : Dj(Aj)(⊂ H) −→ H by
8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

Aj

„

ξI(s)
ξII(s)

«

= −Λj(s)
∂

∂s

„

ξI(s)
ξII(s)

«

,

D
j(Aj) =

„

ξI

ξII

«

∈ (H1[a, b])mj × (H1[a, b])n−mj |

ξII(a) = G
j

LξI(a), ξI(b) = G
j

RξII(b)

ff

.

(3)

With this operator, the system (1) can be written as a

switched evolution equation on H:

dξ(t)

dt
= Aσ(t)ξ(t), t > 0 (4)

with ξ(t) = (ξI(t, ·)
⊤, ξII(t, ·)

⊤)⊤.

The following result is well-known [6]:

Lemma 1: For a fixed j ∈ Q, the operator (3) generates

a C0-semigroup {T j(t)}t≥0 on H. �

Thus for a given initial condition ξ̄ ∈ H, the solu-

tion ξ(·) ∈ C ([0,∞),H) of the switched system (1) can

be represented as

ξ(t) = T σ(τK)(t − τK) · · ·T σ(τ1)(τ2 − τ1)T
σ(0)(τ1)ξ̄ (5)

with τK = maxk∈N{τk | τk < t}.

Remark 1: If we assume the initial condition to be piece-

wise continuously differentiable, ξ̄ ∈ PC1([a, b], Rn), then

a solution of switched system (1) also inherits the same

property [17]. �

B. Stability of switched hyperbolic system in diagonal form

We consider stability and stabilizability of the switching

system (1), motivated by a simple PDE counterpart to the

classical ODE observation [11] that asymptotic stability of

all subsystems is not sufficient for the asymptotic stability

of the switched system:

Example 1: Consider system (1) with Q = {1, 2}, Λj =
diag(−1,+1), [a, b] = [0, 1], Gj

L = 1.5(j−1), Gj
R = 1.5(2−

j) and ξ̄(·) ≡ 1. For the case of no switching, the solution

of the system ξ(·) for j = 1 and j = 2 is zero for all

t > 2, but the solution of the system with switching times

τk = 0.5, 1.5, 2.5, . . . , blows up (i. e. limt→∞ ‖ξ(t)‖∞ =
∞), because the values on the right-going characteristic ξ2

emerging from all s ∈ (0, 0.5) always increase by reflection

of the characteristics along the boundary. �
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Note that starting from an initial condition ξ̄ ≡ 0 the

solution ξ(·) of the switched system (1) satisfies ξ(t) = 0 for

all t ≥ 0. Without loss of generality, we consider the problem

of asymptotic stability only for this equilibrium state. For

a given switching sequence σ(·), we say that the system

is stable, if for all ε > 0 sufficiently small, there exists

a δ(ε) > 0 such that if ‖ξ(0)‖2 ≤ δ, then ‖ξ(t)‖2 ≤ ε
for all t ≥ 0. We say that the system is asymptotically

stable, if it is stable and limt→∞ ‖ξ(·)‖2 = 0. In view of

main problem (A), we then say that the switched system is

absolutely asymptotically stable if it is asymptotically stable

for all switching sequences σ(·) satisfying assumption (H3).

Finally, in view of problem (B), we say that a value τ > 0
is a dwell-time of a switching signal σ(·), if the intervals

between consecutive switches are no shorter than τ , that is,

τk+1 − τk ≥ τ for all k > 0.

It was shown in [15], that infinite dimensional switched

systems like (4) are exponentially stable for arbitrary switch-

ing if all subsystems are exponentially stable and the oper-

ators commute pairwise. However, due to the presence of

boundary conditions in (1), the operators Aj defined in (3)

do not commute pairwise in general. Thus we will focus on

conditions for the boundary data under which the switched

system is absolutely asymptotically stable. We begin with a

very strong sufficient condition where we ask all boundary

data to be strictly dissipative, compare [7].

Assumption 1: (Strict dissipativeness) For all j ∈ Q and

for all vI ∈ R
mj and vII ∈ R

n−mj let the following

conditions hold

(

vI

vII

)⊤
∂Λj(s)

∂s

(

vI

vII

)

≤ 0 for all s ∈ [a, b] (6)

v⊤
I (Λj

I(a) + (Gj
L)⊤Λj

II(a)Gj
L)vI ≤ −rI‖vI‖

2 (7)

v⊤
II(Λ

j
II(b) + (Gj

R)⊤Λj
I(b)G

j
R)vII ≥ +rII‖vII‖

2 (8)

where rI , rII ≥ 0 are constants such that rI + rII > 0.

Theorem 1: Let the switching system (1) under hypothe-

ses (H1)-(H4) satisfy Assumption 1. Then the system is

absolutely asymptotically stable.

Proof:

We suppose rI > 0 (the case rII > 0 is analogous). We
have

d

dt
‖ξ(t)‖2

2 = 2

Z b

a

ξ⊤(t, s)
d

dt
ξ(t, s)ds

= −2

Z b

a

ξ⊤(t, s)Λj(s)
∂

∂s
ξ(t, s)ds

= −ξ(t, b)⊤Λj(b)ξ(t, b) + ξ(t, a)⊤Λj(a)ξ(t, a)

+

Z b

a

ξ(t, s)⊤
„

∂Λj(s)

∂s

«

ξ(t, s)ds

≤ −ξ(t, b)⊤Λj(b)ξ(t, b) + ξ(t, a)⊤Λj(a)ξ(t, a)

= −ξ⊤II(t, b)
“

Λj
II

(b) + (Gj
R

)⊤Λj
I
(b)Gj

R

”

ξII(t, b)

+ ξ⊤I (t, a)
“

Λj
I
(a) + (Gj

L
)⊤Λj

II
(a)Gj

L

”

ξI(t, a)

≤ −rI‖ξI(t, a)‖2

where the inequalities follow from conditions (6)–(8). Thus,

we have

‖ξ(t)‖2
2 ≤ ‖ξ(0)‖2

2 − rI

∫ t

0

‖ξI(ϑ, a)‖2dϑ. (9)

So we see that ‖ξ(t)‖2 is a non-increasing function of t
for all j ∈ Q. Consider t > τ̄ where τ̄ is given by (12).

Let tu (resp. tl) be the time taken by the slowest left-going

(resp. right-going) characteristic path passing through (t, a)
(resp. (0, a)) to hit the boundary s = b. By standard energy

estimates for the equations ∂sξ = −(Aj(s))−1∂tξ, we have

that
∫ tu

tl

‖ξ(y)‖2
2dy ≤ Kj

∫ t

0

‖ξI(ϑ, a)‖2dϑ,

where Kj > 0 are constants. Using that ‖ξ(·)‖2 is decreasing

for all j ∈ Q, we have that

(tu − tl)‖ξ(t)‖2
2 ≤

∫ tu

tl

‖ξ(y)‖2
2dy,

so using (9) with a constant 0 < γ = (tu−tl)
(rI maxj∈Q Kj) between

t and t+ τ̄ , we have ‖ξ(t+ τ̄)‖2
2 ≤ ‖ξ(t)‖2

2 − γ‖ξ(t+ τ̄)‖2
2.

With the constant K =
√

1/(1 + γ) < 1, this implies

‖ξ(t + τ̄)‖2 ≤ K‖ξ(t)‖2

for all switching signals σ(·) satisfying (H3). Thus, by

induction, we have

‖ξ(t + iτ̄)‖2 ≤ Ki‖ξ(0)‖2 = exp(−i| ln(K)|)‖ξ(0)‖2

and finally, for a suitable positive constant c > 0,

‖ξ(t)‖2 ≤ c exp(−t| ln(K)|)‖ξ(0)‖2.

Remark 2: Theorem 1 also holds if the assumption rI +
rII ≥ 0 is dropped but the inequality (6) for all j ∈ Q is

strict for some s ∈ [a, b]. �

We will later consider a weaker sufficient condition similar

on the following spectral radius condition also known for

quasi-linear hyperbolic systems [8].

Assumption 2: For all j ∈ Q, let the following hold:

inf
γ=diag{γi},γi>0

(i=1,...,n)

∥

∥

∥

∥

γ

(

0 Gj
R

Gj
L 0

)

γ−1

∥

∥

∥

∥

∞

< 1, (10)

where ‖M‖∞ := max{
∑n

j=1 |M |ij ; i ∈ {1, . . . , n}} for

M ∈ R
n×n. �

Note that condition (10) is a spectral radius condition because

is the same as saying that the maximum eigenvalue of the

characterizing matrix

Gj :=

(

0 |Gj
R|

|Gj
L| 0

)

is less than one. Under assumption 2, the subsystems for

fixed j ∈ Q are known to be exponentially stable [8], i. e. it

is known that there exists constants M,β > 0 such that the

semigroups in Lemma 1 satisfy

‖T j(t)‖ ≤ M exp(−βt), (11)
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where ‖ · ‖ denotes the induced operator norm. However,

assumption 2 is no longer sufficient for the switched system

to be asymptotically stable, noting that Gj
L, Gj

R in Example 1

satisfy (10). Nevertheless, as common for switched ODE

systems, the switched system (1) satisfying assumption (2)

can be stabilized by switching slow enough, i. e.

Corollary 1: (Dwell-Time) Consider (1) under assump-

tion 2 and define the following values

τ̄j :=(b − a)

{

(

min
s∈[a,b]

i=1,...,mj

|λj
i (s)|

)−1
+
(

min
s∈[a,b]

i=mj+1,...,n

|λj
i (s)|

)−1
}

τ̄ := max
j∈Q

τ̄j . (12)

Then, for any τ ≥ τ̄ assumed as dwell-time for the switching

signal σ(·), the system (1) under hypotheses (H1)-(H4) is

asymptotically stable.

Proof: Observe that in mode j, the first summand in

the definition of τ̄j denotes the time taken by the slowest

left moving characteristic curve starting from s = b to cross

(b− a); similarly the second summand for the slowest right

moving characteristic curve. So τ̄ denotes the time in which

all characteristic curves starting at any point in (b − a)
will have hit both left and right boundary at least once

independent of the mode j ∈ Q. The dwell time result then

follows directly by induction in time over τ̄ -steps.

Assumption 2 can be generalized to the following joint

spectral radius condition.

Assumption 3: For all j, j
′

∈ Q, let the following hold:

inf
γ=diag{γi},γi>0

(i=1,...,n)

∥

∥

∥

∥

∥

γ

(

0 Gj′

R

Gj
L 0

)

γ−1

∥

∥

∥

∥

∥

∞

< 1. (13)

�

Under the above condition one can show absolute asymp-

totic stability.

Theorem 2: Let the switching system (1) under hypothe-

ses (H1)–(H4) satisfy Assumption 3. Then the system is

absolutely asymptotically stable (indeed, L∞-exponentially

stable).

Proof: The proof given in [17] can be easily extended

to the more general situation considered here.

III. STABILITY OF HYPERBOLIC SWITCHING SYSTEMS

IN NON-DIAGONAL FORM

A. Switched system in non-diagonal form

In this section, we draw attention to systems such as

the ones considered in Section II, but where the advective

velocity matrices Aj(s) are only supposed to be equivalent

to diagonal matrices Λj(s) for all j ∈ Q via transformations

Sj(s)A
j(s)S−1

j (s) = Λj(s)

with Sj(·) and S−1
j (·) in (C1[a, b])n×n. Such switching

systems result for instance from sequential linearization

in time along equilibrium states of non-linear hyperbolic

systems. The switched system in non-diagonal form in which

the switches in time are again for all t ≥ 0 governed by the

switching signal σ(·) with σ(t) ∈ Q ≃ {1, . . . , N} is given

by










∂

∂t
u(t, s) + Aσ(t)(s)

∂

∂s
u(t, s) = 0

D
σ(t)
L u(t, a) = 0, D

σ(t)
R u(t, b) = 0

u(0, s) = ū(s)

(14)

where for all j ∈ Q

(H′
1) Aj(s) ∈ R

n×n is strictly hyperbolic, i. e. Aj has

mj negative and (n − mj) positive eigenvalues λj
i (s)

with n corresponding linearly independent left (resp.

right) eigenvectors lji (s) (rj
i (s)), s ∈ [a, b]; Sj(s) =

[lj1(s)
∣

∣ . . .
∣

∣ljn(s)]⊤, s ∈ [a, b].

Under the transformation u(t, s) = S−1
σ(t)(s)ξ(t, s), the PDE

in each mode becomes

∂

∂t
ξ(t, s) + Λσ(t)(s)

∂

∂s
ξ(t, s) = 0, (15)

with initial and the boundary conditions ξ̄(s) =

Sσ(0)(s)ū(s), D̃
σ(t)
L ξ(t, a) = 0, D̃

σ(t)
R ξ(t, b) = 0, using

D̃
σ(t)
L = D

σ(t)
L S−1

σ(t)(a), D̃
σ(t)
R = D

σ(t)
R S−1

σ(t)(b). For all

j ∈ Q, we use the representation

ξ(t, s) =

(

ξI(t, s)
ξII(t, s)

)

, ξI(t, s) ∈ R
mj , ξII(t, s) ∈ R

n−mj

and D̃j
L = [D̃j

L,I

∣

∣D̃j
L,II ], D̃j

R = [D̃j
R,I

∣

∣D̃j
R,II ].

We introduce the following hypothesis:

(H′
2) For all j ∈ Q, Dj

L ∈ R
(n−mj)×n and Dj

R ∈ R
mj×n

are such that D̃j
L,II ∈ R

(n−mj)×(n−mj) and D̃j
R,I ∈

R
mj×mj are both non-singular.

and recall the following result for a fixed j ∈ Q [18]:

Lemma 2: Under hypothesis (H′
1), (H′

2) and (H3), the

subsystems for a fixed j ∈ Q in (14) are well-posed. �

We can see that the boundary conditions for the switched

system (14) can be written as

ξj
II(t, a) = −(D̃j

L,II)
−1D̃j

L,Iξ
j
I(t, a)

ξj
I(t, b) = −(D̃j

R,I)
−1D̃j

R,IIξ
j
I(t, b).

(16)

Thus for a given initial condition ū ∈ H, the solution u(·) ∈
C ([0,∞),H) of the switched system (1) can be represented

as

u(t) = S−1
σ(t)T

σ(τK)(t − τK)T̃ σ(τK−1)(τK − τK−1)

· · · T̃ σ(τ1)(τ2 − τ1)T̃
σ(0)(τ1)Sσ(0)ū (17)

with

T̃ σ(τk)(τk+1 − τk) := Sσ(τk+1+)S
−1
σ(τk+1−)T

σ(τk)(τk+1 − τk)

and τK = maxk∈N{τk | τk < t} and τ0 = 0, where

{T j(t)}t≥0 is the semigroup generated for the system (15)

with (16), cf. Lemma 1.
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B. Stability of switched hyperbolic system in non-diagonal

form

Again, we begin with an example, showing that the

joint spectral radius condition (13) for the boundaries is no

longer sufficient for the switched system to be absolutely

asymptotically stable.

Example 2: Consider the system (14) on T × [0, 1] with

two modes (Q = {1, 2}) and

A1 =

(

−1 0
0 +1

)

, A2 =

(

2.6 14.4
−0.4 −2.6

)

,

D1
L =

(

− 3
2

1

)⊤

, D2
L =

(

− 1
11
1

)⊤

, D1
R =

(

1
− 1

4

)⊤

, D2
R =

(

1
14

)⊤

for an alternating switching signal σ(·) with switching times

G = {0.5, 1, 1.5, . . .} and let the initial condition be

ū(s) =

{

(v̄1
I , v̄2

I )⊤ s ∈ [0, 0.5]

(v̄1
II , v̄

2
II)

⊤ s ∈ (0.5, 1],
σ(0) = 1. (18)

It can be easily seen that this example satisfies (H′
1) and (H′

2)

and that

S1A
1S−1

1 = S2A
2S−1

2 = diag(−1, 1) := Λ, (19)

where S1 =

(

1 0
0 1

)

and S2 =

(

0.1 0.9
0.2 0.8

)

. Defining the

characteristic variables ξ(t, s) = (ξ1(t, s), ξ2(t, s))⊤ as ξ =
Sju for j ∈ {1, 2}, the switched system (2) in characteristic

variables becomes:

∂tξ + Λ∂sξ = 0,

ξ2(t, 0) =
3

2
ξ1(t, 0), ξ1(t, 1) =

1

4
ξ2(t, 1),

(20)

and the initial condition (18) becomes

ξ̄(s) =

{

(v̄1
I , v̄2

I )⊤ s ∈ [0, 0.5]

(v̄1
II , v̄

2
II)

⊤ s ∈ (0.5, 1],
σ(0) = 1. (21)

The characterizing matrix for j ∈ {1, 2} is both

Gj =

(

0 1
4

3
2 0

)

which has a (joint) spectral radius 0.6124 which is less
than 1.
It is easy to observe that for the system (2),(18), the solution
at all times that take values in G := {0, 0.5, 1.0, 1.5, . . .} is
constant in s ∈ [0, 0.5] and s ∈ (0.5, 1]. So consider the
system at times τk ∈ G, k ∈ N and let the value of solution
be

u(τk, s) =

(

(v1
I
(τk), v2

I
(τk))⊤ s ∈ [0, 0.5]

(v1
II

(τk), v2
II

(τk))⊤ s ∈ (0.5, 1].
(22)

The values of the solution at τk+2 is then

u(τk+2, s) =

(

(v1
I
(τk+2), v

2
I
(τk+2))

⊤ s ∈ [0, 0.5]

(v1
II

(τk+2), v2
II

(τk+2))
⊤ s ∈ (0.5, 1].

(23)

The quantities in equations (22) and (23) are related as
0

B

B

@

v1
I
(τk+2)

v2
I
(τk+2)

v1
II

(τk+2)
v2

II
(τk+2)

1

C

C

A

= M

0

B

B

@

v1
I
(τk)

v2
I
(τk)

v1
II

(τk)
v2

II
(τk)

1

C

C

A

, (24)

ξm+1ξ1 ξm+2ξ2 ξ2mξm

0

t

0 0s s s

Hup H1(t, s) H2(t, s) Hm(t, s) Hdo

V1(t, s) V2(t, s)
Vm(t, s)

w
j
0(t) w

j
1(t) w

j
2(t) w

j

m−1(t) wj
m(t)

Reach 1 Reach 2 Reach m

Fig. 2. (a) Cascade of canals operated by multi-mode underflow sluice
gates. (b) Characteristic variables characterizing each reach.

where

M =

0

B

@

18.225 −7.200 1.350 −0.200
−2.025 1.800 −0.150 0.050
10.800 −1.600 1.800 −0.100
−1.200 −0.400 −0.200 −0.025

1

C

A
.

The eigenvalues of M are 19.9, 1.08, 0.84,−0.02. Thus, the

matrix M is unstable and this implies that ‖u(τk)‖∞ tends

to infinity as k → ∞. �

As a direct consequence of symmetric diagonalizability of

all subsystems (14) to (1), we have the following.

Corollary 2: All stability results from the former section

hold for pairwise commuting matrices AjAj′

= Aj′

Aj

(j, j′ ∈ Q). �

For general Aj , our main concern is that the discrete time

system
{

uk+1 = Bkuk

u0 = Sσ(0)ū
(25)

with Bk = Sσ(τk+1+)S
−1
σ(τk+1−)T

σ(τk)(τk+1 − τk) may be

unstable. However, it should be clear that a dwell-time τ ≥
τk+1 − τk has a stabilizing role.

Proposition 1: For any switching system (14) under hy-

potheses (H′
1)–(H′

2) and (H3) satisfying Assumption 2 with

Gj
L = −(D̃j

L,II)
−1D̃j

L,I , Gj
R = −(D̃j

R,I)
−1D̃j

R,II ,

there exists a value τ̄ such that for any τ ≥ τ̄ assumed as

dwell-time for the switching signal σ(·), the switched system

is asymptotically stable.

Proof: We have that

ρ(Bk) ≤ ‖Sσ(τk+1+)S
−1
σ(τk+1−)‖‖T

σ(τk)(τk+1 − τk)‖

≤ max
j,j′∈Q

( max
s∈[a,b]

‖SjS
−1
j′ ‖)‖T σ(τk)(τk+1 − τk)‖

=: K‖T σ(τk)(τk+1 − τk)‖

where ρ(·) denotes the spectral radius. Here,

K‖T σ(τk)(τk+1 − τk)‖ can always be made smaller

than one under Assumption 2 using (11).

IV. APPLICATION FOR LINEARIZED SAINT-VENANT

EQUATIONS

We motivate our study by an example of a cascade of m
canal reaches as depicted in Figure 2 (a). Consider a supervi-

sory controller orchestrating a finite set of boundary feedback
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controlled underflow sluice gates with corresponding gate

openings wj
i for reach i in mode j. The flow of water in

reach i is characterized by velocity Vi(t, s) and elevation

Hi(t, s). For horizontal, prismatic canals with rectangular

cross-section, frictionless walls and normalized length, the

flow, under gravity g, satisfies the Saint-Venant equations [2]

∂

∂t

(

Hi

Vi

)

+

(

Vi Hi

g Vi

)

∂

∂s

(

Hi

Vi

)

=

(

0
0

)

(26)

for i = 1, . . . ,m, each defined on the domain {(t, s) :
0 ≤ t < ∞, 0 ≤ s ≤ 1}. Let the initial data be given

by Hi(0, s), Vi(0, s) and the boundary conditions modeling

decentralized feedback control actions in mode j together

with flow conservation for each reach i be given by

f j
1 (wj

0(t),H1(t, 0), V1(t, 0),Hup) = 0

f j
i (wj

i (t),Hi(t, 1),Hi+1(t, 0), Vi(t, 1), Vi+1(t, 0)) = 0

f j
m(wj

m(t),Hm(t, 1), Vm(t, 1),Hdo) = 0

Hi(t, 1)Vi(t, 1) − Hi+1(t, 0)Vi+1(t, 0) = 0

where Hup, Hdo are the (known) up and down stream water

levels.

Assume that under constant gate openings w̄i and constant

Hup, Hdo, each reach attains a uniform steady state (H̄i, V̄i)
such that Hdo < H̄m < . . . < H̄1 < Hup and H̄1V̄1 > 0.

Using vi(x, t) = Vi(x, t)− V̄i and hi(x, t) = Hi(x, t)− H̄i,

the linearized model can be written as

∂

∂t

(

hi

vi

)

+

(

V̄i H̄i

g V̄i

)

∂

∂s

(

hi

vi

)

=

(

0
0

)

(27)

with initial conditions hi(0, ·), vi(0, ·) for i = 1, . . . ,m.

With a change of coordinates ξi(t, s) = hi(t, s)+vi

√

H̄i/g,

ξm+i(t, s) = hi(t, s) − vi

√

H̄i/g the system becomes

∂

∂t

„

ξi

ξm+i

«

+

„

λi 0
0 λm+i

«

∂

∂s

„

ξi

ξm+i

«

=

„

0
0

«

(28)

with λi = (
√

gH̄i − V̄i) and λm+i = (
√

gH̄i + V̄i).
Under sub-critical flow, the eigenvalues satisfy λi < 0 <

λm+i. For the system of m−canal reaches, equation (28) can

be written in the form

∂tξ + Λ∂sξ = 0, (29)

where ξ = (ξ1, . . . , ξm, ξm+1, . . . , ξ2m)⊤ and Λ =
diag(λ1, . . . , λ2m) (see Figure 2 (b)). Moreover, setting ξI =
(ξ1, . . . , ξm), ξII = (ξm+1, . . . , ξ2m) and taking into account

the coordinate transformation while assuming sufficient reg-

ularity of f j
i , the boundary conditions in linearized form for

each j can be rewritten as

ξII(t, 0) = Gj
LξI(t, 0) ξI(t, 1) = Gj

RξII(t, 1) (30)

with appropriately defined jacobians Gj
L, Gj

R (for details on

the derivation for an explicit control law f j
i see [3]).

Our results from Section II provide a set of sufficient

conditions for solutions of (29)-(30) to decay for any admis-

sible supervisory control action, e. g. as to persue superior

objectives. In this context, the dwell-time results appear to be

conventional, taking into account the multiscale peculiarity

of the modeling.

V. FINAL REMARKS

We presented first results on stability of switching among

systems of linear hyperbolic PDEs involving boundary data.

It should have become clear that, although the switching

signal was taken as global, all results apply for switching

the boundary conditions or system matrices individually by

introducing appropriate auxiliary modes, this is just a matter

of notational convenience. Eventually, our results motivate

further study of stability of PDE system that undergo switch-

ing in time, in particular, future direction of work should

include extension of a Lyapunov theory for switched PDE

systems.
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