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Abstract— We present a state estimation method for two-
dimensional shallow water equations in rivers using Lagrangian
drifter positions as measurements. The aim of this method
is to compensate for the lack of knowledge of upstream
and downstream boundary conditions in rivers that causes
inaccuracy in the velocity field estimation by releasing drifters
equipped with GPS receivers. The drifters report their positions
and thus provide additional information of the state of the river.
This information is incorporated into shallow water equations
by using Ensemble Kalman Filtering (EnKF). The proposed
method is based on the discretization of the governing non-
linear equations using the finite element method in unstructured
meshes. We incorporate the drifter positions into the unknown
state, which directly exploits the Langrangian nature of the
measurements. The performance of the method is assessed with
twin experiments.

I. INTRODUCTION

In river hydraulics, atmospheric sciences, and oceanogra-

phy, forecasts are based on solutions of underlying partial

differential equations and assimilation of measurement data

into these models [1], [2], [3], [4]. The knowledge of the

boundary conditions (and initial condition) of the partial

differential equations are crucial for the reliability of the

computed solutions. In river hydraulics, for example, the

boundary conditions are collected from gauge stations from

different parts of the river.

When modeling large river systems the boundary con-

ditions might not always be known at the boundaries of

the computational domain. In theory, we could extend the

domain to cover a larger area, but the limitations of compu-

tational resources, such as memory and time, may prevent

this. Measurements are sometimes too sparsely sampled

in time to provide good results when used as boundary

conditions for models. Furthermore, the installation of more

accurate portable pressure sensors and velocity profilers is

time consuming and the sensors are very expensive.

To compensate for the lack of knowledge in a case in

which the boundary information is not accurate, Lagrangian

sensors can be deployed into an area of interest. We can use

measurements collected from these sensors to improve the

output of underlying model.

Lagrangian measurements are obtained when the sensors

are moving with the flow itself, reporting their location

and possibly local conditions (such as speed, temperature,

salinity, etc). Examples of these sensors in use can be found

in oceanography [3], [5], [6] (often referred to as drifters or

floats), in river hydraulics [4], and in traffic modeling (mobile

sensors) [7]. The measurements are usually incorporated into

an underlying partial differential equation model to improve

realtime estimates or to provide more reliable forecasts.

Langrangian measurements have also been used to predict

particle motion in oceans [8].

The fundamental idea in the use of Lagrangian measure-

ments is that while specific positions of the drifters do not

provide information about the underlying flow phenomena,

the subsequent measurements provide information about the

velocity field when drifters advect to a new position over

some time interval. The velocity field of the flow is often

referred to as the Eulerian velocity field.

The present work focuses on river hydraulics. More specif-

ically, we seek to incorporate Lagrangian measurements into

a two-dimensional shallow water model with poorly known

upstream and downstream boundary conditions using an

Ensemble Kalman Filter (EnKF). The area of interest is a

section of the Sacramento River in California.

The Ensemble Kalman filter is an alternative to the

traditional Extended Kalman filter (EKF). With nonlinear

dynamics, the linearization required in EKF (for example, in

case of implicit time stepping) can be computationally too

demanding. EnKF is a sequential data assimilation method

which uses Monte Carlo or ensemble integrations. By inte-

grating an ensemble of model states forward in time, it is

possible to compute the mean and error covariances needed

at analysis times (the time instants when measurements are

used to update model output) [9], [10]. The analysis scheme

in EnKF uses traditional update equations of the Kalman

Filter (KF), except that the Kalman gain is computed using

the error covariances provided by the ensemble of model

states.

Whereas many large scale oceanographical problems are

modeled using rectangular domains and Cartesian grids with

large cell sizes and using simple boundary conditions for

the flow, these type of methods are not directly applicable

for smaller scale river flows. In this article we propose an

inverse modeling method which can exploit all the necessary

Proceedings of the
47th IEEE Conference on Decision and Control
Cancun, Mexico, Dec. 9-11, 2008

TuC16.5

978-1-4244-3124-3/08/$25.00 ©2008 IEEE 1783



nonlinearities and complex geometries that are encountered

in river modeling. The prediction step needed in the EnKF

is made using a fully nonlinear Shallow Water Equation

(SWE) solver package Telemac 2D [11], which operates on

an unstructured triangular grid.

The contributions of this article are as follows. We

employ state estimation for nonlinear 2D shallow water

equations using Lagrangian measurements in rivers without

deriving Eulerian flow velocities from the measurements.

The method is tested by using experimental measurement

data for bathymetry and boundary conditions. The geometry

of the area is complex and thus we use an unstructured

finite element mesh. The unknown state variables define a

distributed parameter system and the Lagrangian sensors are

incorporated into the state. This state augmentation approach,

compared to traditional approaches, makes it possible to

use a time-independent observation model which means that

the observation model does not change, even though the

locations from which the observations are collected change

over time.

The rest of the article is organized as follows. In Section

II, we present the Shallow Water Equations and Langragian

sensor dynamics. In Section III, we define the state estima-

tion problem, that is, the assimilation of Lagrangian data into

the Shallow Water Equations. In Section IV, the proposed

method is tested with simulations. Finally, in Section V we

present conclusions and future milestones related to sensor

deployments in the Sacramento delta.

II. FORWARD PROBLEM

A. Two-dimensional Shallow Water Equations

The governing hydrodynamic equations are [11], [12]:

∂h

∂ t
+−→u ·∇h+ h∇ · −→u = 0 (1)

∂u

∂ t
+−→u ·∇u = −g

∂η
∂x

+ Fx +
1

h
∇ · (hνt∇u) (2)

∂v

∂ t
+−→u ·∇v = −g

∂η
∂y

+ Fy +
1

h
∇ · (hνt∇v) (3)

The friction forces are given by the following Manning law:

Fx = −
1

cosα
gm2

h4/3
u
√

u2 + v2 (4)

Fy = −
1

cosα
gm2

h4/3
v
√

u2 + v2 (5)

where h is the total depth of water, −→u = (u,v) is the velocity

field, g is the acceleration of gravity, η is the free surface

elevation, νt is the coefficient of turbulence diffusion obeying

the so called k-epsilon model [11], α = α(x,y) is the slope

of the bottom, and m is the Manning coefficient. Finally, t is

time and x,y are horizontal space coordinates. The boundary

and initial conditions are given by

u(x,y,t)
∣

∣

∂Ωland
= 0, v(x,y,t)

∣

∣

∂Ωland
= 0, (6)

(u(x,y,t),v(x,y,t))
∣

∣

∂Ωupstream
= f (x,y, t), (7)

η(x,y,t)
∣

∣

∂Ωdownstream
= g(x,y,t), (8)

u(x,y,0) = u0, v(x,y,0) = v0, h(x,y,0) = h0, (9)

where ∂Ω represents the boundaries of our computational

domain and f ,g are known functions (in the present case

obtained from experimental measurements and a Delta Sim-

ulation Model II (DSM2) numerical tool [13]).

To clarify the notation, from now on we denote the

concatenated vector of flow variables (u,v,h) by θF .

B. Lagrangian drifters

In addition to the above equations describing the flow

dynamics, we model the deployed drifters as passive La-

grangian tracers. Hence, the drifters move with the local fluid

velocity, obeying the following equations:

dxD(t)

dt
= u[xD(t),yD(t), t], (10)

dyD(t)

dt
= v[xD(t),yD(t), t], (11)

with the initial conditions

xD(0) = xD,0, yD(0) = yD,0. (12)

In (10) and (11) the dimension of xD and yD is the same

as the total number of deployed drifters. In the sequel we

denote the concatenated vector of drifter positions (x D,yD)
by θD.

C. Numerical solution

The numerical solution of the 2D shallow-water equations

and drifter positions, i.e., the forward problem, is computed

using a commercial hydrodynamic software Telemac 2D

[11]. Telemac 2D uses a streamline upwind Petrov-Galerkin

based finite element solver for hydrodynamic equations.

III. STATE ESTIMATION PROBLEM

A. State-space equations

In the state estimation the aim is to extract information

about the unknown quantity and use the measurements to

provide additional information.

In this state estimation problem we employ a state-

augmentation approach that has been earlier introduced in

oceanography (see [6], [14], [15] for more details). In this

approach, Lagrangian drifter positions are embedded in the

state vector and the new state vector is written as

θ =

(

θF

θD

)

.

This approach makes it possible to take the Lagrangian

nature of observations into account in a way which does

not require deriving Eulerian quantities from Lagrangian

measurements.

By inspecting (1)–(12) we note that there is a one-way

coupled system from flow variables θF to drifter positions

θD, that is, the drifter positions can be solved after the flow

variables have been solved. Let us express this system by

Fk, where subindex k refers to time step. Furthermore, due

to the uncertainties in the modeling we add a stochastic term

wk to represent these modeling errors. The noise process w k,
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with covariance Qk, is a Gaussian noise process that is used

to model inaccuracies in the evolution model (discretization

error, poorly known inputs etc., see for example [16]).

Thus, we can write a nonlinear discrete stochastic state

space model of the form:

θk+1 = Fk(θk)+ wk. (13)

Here θk is the predicted system state at time step k and Fk(θk)
is one time step in the (non-linear) discretized shallow water

and drifter model. Formula (13) is usually called the state

evolution equation.

For the observations, we use an additive noise model

yk = Hkθk + εk. (14)

The observation vector is yk and the observation model that

relates the state variables to the measurements is Hk. The

noise process εk is the measurement noise with covariance

Rk. Without loss of generality, noise processes are assumed

to have zero mean. Furthermore, with these choices, the

observation model Hk becomes simply Hk = (0 I) where 0

is a zero matrix and I is the identity operator.

B. Ensemble Kalman Filter (EnKF)

In the filtering problem, the aim is to compute conditional

expectations

θk|k = E(θk|yk, . . . ,y1).

In the case of linear observation and evolution equations

and Gaussian noise processes, the recursive Kalman filter

algorithm can be used for determining the estimates of

conditional expectation θk|k and covariance Γk|k. If evolution

and/or observation equations are nonlinear, the Extended

Kalman Filter can be applied [17]. The use of the EKF also

requires that the operator Fk(·) is differentiable, which is not

always the case in practice. However, to avoid the difficult

linearization of the model Fk and to preserve the higher order

statistics, which may be lost in the linearization, we employ

the Ensemble Kalman filter.

For the state space model (13)–(14), the EnKF algorithm

can be summarized as in [9], [1]:

1) Initialization: An ensemble of N states ξ (i)
0|0 are gener-

ated to represent the uncertainty in θ0.

2) Time update:

ξ (i)
k|k−1

= F(ξ (i)
k−1|k−1

)+ w
(i)
k−1 (15)

θk|k−1 =
1

N

N

∑
i=1

ξ (i)
k|k−1

(16)

Ek|k−1 = [ξ (1)
k|k−1

−θk|k−1, . . . ,ξ
(N)
k|k−1

−θk|k−1] (17)

3) Measurement update:

Γk|k−1 =
1

N −1
Ek|k−1ET

k|k−1 (18)

Kk = Γk|k−1HT
k [HkΓk|k−1HT

k + Rk]
−1 (19)

ξ (i)
k|k = ξ (i)

k|k−1
+ Kk[yk −Hkξ (i)

k|k−1
+ ε(i)

k ] (20)

where the ensemble of state vectors are generated with the

realizations w
(i)
k and ε (i)

k of the noise processes wk and εk, re-

spectively. In the previous equations, an important step is that

at measurement times, each measurement is represented by

an ensemble. This ensemble has the actual measurement y k

as mean and the variance of the ensemble is used to represent

measurement errors. This is done by adding perturbations ε (i)
k

to measurements drawn from a distribution with zero mean

and covariance equal to measurement error covariance matrix

Rk. This ensures that the updated ensemble has a variance

that is not too low [10]. The graphical illustration of the

EnKF algorithm is presented in Fig. 1.

Fig. 1. Graphical illustration of the Ensemble Kalman Filter algorithm.

IV. NUMERICAL RESULTS

A. Simulating the drifter trajectories

The domain of interest is the Sacramento River, upstream

of the intersection with the Georgiana Slough, in the Sacra-

mento delta. The bathymetry is provided by United States

Geological Survey (USGS) as shown in Fig. 2. The 930m

long section of the Sacramento River is 85m wide in its

narrowest part and 190m wide in its largest part.
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Fig. 2. Bathymetry in the Sacramento River (m). The bathymetry on this
930m section of the Sacramento River goes from -14m in the deepest part
to +2m on the river banks.

The software package Telemac 2D is used to perform a

non linear forward simulation from which the drifter position
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measurements and so called true state of the river is obtained.

The true state and the drifter measurements are computed

in a denser mesh (2972 nodes, 5484 triangular elements)

compared to the mesh used in the solution of the inverse

problem (1428 nodes, 2567 triangular elements). The use

of different meshes is necessary when one wants to avoid

the so-called inverse crime. This term refers to an overly

optimistic setup of a twin experiment in which the simulated

measurements are computed using the same underlying for-

ward model and/or discretization of the forward model that

is used in the solution of the inverse problem (see [18]).

The boundary conditions for models (Fig. 3) are computed

using the Delta Simulation Model II (DSM2). It is a model of

the San Francisco Bay and Sacramento Delta that provides

discharge and surface elevation at various locations every

hour. The bottom friction is modeled using Manning’s law.

The Manning coefficient is chosen to be constant in time and

space and equal to 0.02, corresponding to a straight gravel

bottom (see [19]). The simulation runs for two and a half

hours before the release of the drifters so that a stable state

is reached. The drifters are released starting at 1:00AM on

June 29th 2006. This time period was chosen to provide a

highly variable flow in Sacramento river.

We release a total of twenty four drifters during the

experiment. The first eight drifters are released at 1:00AM

on one line at the upstream boundary. Then at 1:20AM,

we release eight more drifters at the upstream boundary,

followed by eight more at 1:40AM. Drifter positions are then

recorded every 30 seconds until the end of the experiment

at 2:00AM. Fig. 4 shows the drifter trajectories and the

snapshots of the drifter positions corresponding to the three

releases of the drifters.

B. Data assimilation experiment

At first, an initial ensemble for the EnKF is created. We

generate an ensemble of size N = 100 as follows. The idea

is to produce N different initial velocity fields representating

the different states of the river. In order to do this, we

use data from the DSM2 model, which are available for a

period of eight years. From these data, we extract statistical

characteristics of the boundary conditions: a mean value

of discharge upstream, a mean value of surface elevation

downstream and a covariance matrix of those two quantities.

From this, we generate a set of discharges and free surface

elevations (q(i),η (i)), i = 1, . . . ,N that correspond to the

statistical characteristics deduced from the historical data.

For each discharge q(i), we deduce a velocity profile

(u(i),v(i))
∣

∣

∂Ωupstream
,

that is normal to the upstream boundary and proportional to

the square root of the water depth at the upstream boundary.

The downstream boundary condition is the surface elevation

obtained directly from the historical data statistics:

η(i)
∣

∣

∂Ωdownstream
= η(i).

In order to obtain realistic initial states for the EnKF

algorithm, an 2.5 hour stabilization run is performed as

(a) Time Step 0

(b) Time Step 40

(c) Time Step 80

(d) Time Step 120

Fig. 4. Drifter trajectories and their release positions. 8 drifters are released
at time step 0 (×), 8 drifters at time step 40 (▽) and 8 drifters at time step
80 (△). For measurement purposes, the drifter positions are sampled with
a 30-second-time-interval until the time step 120.
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Time

η
 (

m
)

(b) Downstream free surface elevation

Fig. 3. The solid line represents the linearly interpolated DSM2 boundary conditions used in Telemac as boundary conditions.

follows. Forward solver Telemac 2D is started from zero

velocity and it runs for 2.5 hours for each ensemble member

using the set (u(i),v(i))
∣

∣

∂Ωupstream
,η(i) as boundary conditions.

By doing this, numerically stable and physically meaningful

initial states for flow variables (u
(i)
0 ,v

(i)
0 ,h

(i)
0 ) are obtained.

Furthermore, the zero velocity initial condition that we use

to instantiate Telemac 2D is not affecting the flow variables

when the state estimation starts.

When stable states are reached, state estimation starts at

1:00 AM on June 29th 2006, with a total running time of

120 times a 30-second time step. In the state estimation

procedure we do not update the velocity at the nodes that

correspond to the land boundary. This is to make sure that

we do not violate the no-slip condition. The initial boundary

conditions for each ensemble member at time step zero are

(u(i),v(i))
∣

∣

∂Ωupstream
,η(i); these are obtained from the last time

step of the stabilizing run.

We set the standard deviation of the measurement noise

εk to be 0.5 m in both x and y directions. This indicates our

confidence on the measurement data, and can be seen as a

realistic choice for the accuracy of GPS receivers.

The state noise models the discrepancy between the model

and reality. The state noise for the flow variables is deduced

from the properties of the ensemble members. The covari-

ance matrix Qk for the flow variables is computed as the

covariance of the ensemble. We further assume that the mesh

nodes corresponding to the land nodes are not affected by the

state noise in order not to violate the no-slip condition on the

land boundaries. In addition, we assume that there is a small

uncertainty in the model which predicts the drifter positions.

This uncertainty is modeled by a white noise, that is the

covariance matrix for the drifters is a diagonal matrix. This

uncertainty is indicated by setting the standard deviation of

the state noise in the covariance matrix Qk corresponding to

all drifter coordinates to be 0.5 m in both x and y directions.

We compare the results of the EnKF algorithm with the

results obtained from a reference case. The estimates for

the reference case are obtained by propagating the initial

ensemble forward in time without updating the state with the

drifter measurements. In this case, the only knowledge about

the boundary conditions in the river comes from historical

data. This knowledge is thus contained in the ensemble and

we use it to obtain our best estimate.

Fig. 5 shows the evolution in time of the relative error

on the computation of the velocity field −→u = (u,v) with and

without the drifters, computed using the following equation:

ε(t) =

√

∑NNode
i=1 ‖−→u True(xi,t)−

−→u (xi,t)‖2

∑NNode
i=1 ‖−→u True(xi,t)‖2

, (21)

where NNode refers to the number of nodes in the mesh that

is used in the inversion, and subindex “True” refers to the

true state. Results from the reality simulation are interpolated

to the same mesh where the state estimation is performed in

order to compute this error.

0 20 40 60 80 100 120
0

5

10

15

20

25

Time Step

E
rr

o
r 

in
 %

Fig. 5. Time evolution of the relative error of the velocity for EnKF
estimate (+) and the reference case (◦). The EnKF estimate captures the
variations in the velocity field and thus, has a smaller error.

Fig. 5 shows the results of the state estimation problem and
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the reference case (forward simulation with no update of the

state using the drifter measurements). At first, the reference

case shows a small error, comparable to the error of the

EnKF estimate. Indeed, the mean value of the discharge in

the ensemble corresponds to the initial value of the discharge

in reality. Thus, the velocity field obtained from the reference

case in the first time steps is very close to the real one and

the relative RMS error is low. Then the discharge in the river

decreases and the reference case estimate diverges from the

true state.

At later time steps in Fig. 5, the results of the state estima-

tion problem show a remarkable improvement compared to

the reference case. The assimilation of the drifter positions

allows to catch the variation of the flow and thus correct the

velocity field.

However, there is no improvement in the water depth

relative error. The error is the same and approximately equal

to 3% for all the simulations. This is justified by the fact

that the information carried by the drifter measurements are

exclusively related to the dynamics of the flow, allowing to

reconstruct a correct velocity field, but giving no information

about the water depth in the river.

Also, to give a view on the error in the velocity fields in

the river, Fig. 6 shows the absolute error in the magnitudes

of velocity fields at time step 0, 60 and 120 for the EnKF

estimate (6a, 6c, 6e) and the reference case (6b, 6d, 6f).

The velocity field resulting from the inverse problem is

clearly closer to the true state than the velocity field deduced

from the forward simulation without using the Lagrangian

measurements.

By looking at Fig. 6 we can see that for the first time

step, the absolute error for both simulations is quite small

and around 2-5 cm/s. Then, while the reference case diverges

from the reality and its error goes up until around 10 cm/s,

the EnKF estimate error stays stable around 2-5cm/s. This is

because the drifters catch the variation in the flow and thus

correct the velocity field. One can also see that the error is

bigger on the land boundary. This might be a consequence

of the absence of drifters in those areas. Indeed, the drifter

trajectories are mainly in the middle of the river and the

velocity field cannot be corrected in the area with few or no

drifter passage.

V. CONCLUSIONS AND FUTURE WORK

In this article we have presented a state estimation method

for 2D shallow water equations in river hydraulics using La-

grangian measurement data. The solution method is based on

the state augmentation and the use of ensemble Kalman filter.

By using state augmentation it is possible to use the drifter

positions as measurements directly without any mappings to

Eulerian flow variables. The state augmentation approach has

been earlier successfully introduced to oceanography in [14],

[15], [6].

The performance of the method has been demonstrated

using a twin experiment setting in which the true state and

the measurement data have not been obtained using the same

discretization of the underlying flow model. From the results

a promising performance of the method can be seen. The

method is capable of correcting the velocity field, predicted

using poorly known boundary conditions, toward the true

state of the river compared to the results obtained when no

drifter measurements are used to correct the velocity field.

Because of the nature of river hydraulics, the correction

of the surface elevation remains as a challenging task for

the future. Although we used varying surface elevation to

generate the ensemble, the fact that the drifters do not give a

reliable value for their height do not allow a good correction

for the surface elevation. One key point in the method

proposed in this article was, however, to demonstrate that

we can improve the estimates of the velocity field regardless

of the fact that the boundary conditions used in the inversion

are erroneous compared to those that were used to generate

the true state.

Although the ensemble Kalman filter avoids the difficulties

in the linearization of the forward model, the computational

burden remains quite heavy. With the ensemble size N = 100

one assimilation step takes approximately 3.5 minutes to

compute with a 2.2 GHz Pentium dual core processor. This

can be seen as a small drawback with the current implemen-

tation of the method when considering real time applications.

However, the forward solver can be parallelized. Also, the

ensemble members are independent, so the computational

burden can be distributed among multiple computers in the

future.

Future works using the method include the use of real

data collected from the GPS equipped drifters deployed into

Sacramento Delta. Fig. 7 shows drifter trajectories extracted

from GPS measurements during preliminary field test of

the data collection protocols and drifter deployment on

November 16th 2007.

With real data, the noise model for GPS measurements

can also be embedded into the measurement update part of

the EnKF algorithm. Also, when using real data, the correct

state noise modeling plays an important role. State noise term

should include information about the important stochastic

properties of the flow that might be lost when using sparsely

discretized shallow water equations.

Furthermore, the sensitivity of the method with respect to

different deployment strategies and the optimal number of

drifters is a future research topic.
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(c) Error in the EnKF estimate at time step 60
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(d) Error in the reference case estimate at time step 60
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(e) Error in the EnKF estimate at time step 120
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(f) Error in the reference case estimate at time step 120

Fig. 6. Comparison of the absolute error in the velocity fields (m/s) for the EnKF estimate and the forward simulation of the ensemble members at
time steps 0, 60 and 120. The absolute error is small, around 2-5 cm/s for the EnKF estimate. The reference simulation which is not using Lagrangian
measurements sees its error increasing progressively until reaching 10 cm/s.
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